Acquiring User Models to Test Automated Assistants

Marec Pickett'! and David W. Aha®? and J. Gregory Trafton®
INRC/NRL Postdoctoral Fellow; Washington, DC 20375
2Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5510); Washington, DC 20375
(marc.pickett.ctr | david.aha | greg.trafton) @nrl.navy.mil

Abstract

A central problem in decision support tasks is operator over-
load, in which a human operator’s performance suffers be-
cause he or she is overwhelmed by the cognitive requirements
of a task. To alleviate this problem, it would be useful to
provide the human operator with an automated assistant to
share some of the task’s cognitive load. However, the devel-
opment cycle for building an automated assistant is hampered
by the testing phase because this involves human user stud-
ies, which are costly and time-consuming to conduct. As an
alternative to user studies, we propose acquiring user models,
which can be used as a proxy for human users during middle
iterations, thereby significantly shortening the development
cycle for rapid development. The primary contribution of this
paper is a method for coarsely testing automated assistants
by using user models acquired from traces gathered from var-
ious individual human operators. We apply this method in a
case study in which we evaluate an automated assistant for
users operating in a simulation of multiple unmanned aerial
vehicles.

1 Introduction

Operators of unmanned vehicles can suffer from information
overload, which may lead to loss of situation awareness and
sometimes fatal consequences (Shanker and Richtel 2011).
To address this, researchers have proposed using decision
aids with two primary components: a cognitive model that
assesses an operator’s state in the context of the system they
are using to monitor these vehicles and an automated assis-
tant that aids the operator as needed (Ratwani, McCurry, and
Trafton 2010). For example, when the cognitive model pre-
dicts that the user is distracted the assistant could draw the
user’s attention and make recommendations, or even execute
recommended actions under limited conditions.

Typically, testing these decision aids involves assessing
their ability to assist operators in subject studies. However,
these studies require substantial time and effort to design and
conduct, and a single study is limited to testing at most only
a few decision aid variants. Thus, if many design options of
the automated assistant need to be considered, testing each
all of them can be prohibitively expensive.

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Method for Acquiring and Using User Models

1. Gather traces from human operators in an initial subject study.
2. Acquire user models from traces.

e Extract feature vectors from traces.

o Construct an expert operator.

e Hobble the expert operator to match user feature vectors.
3. Evaluate the user models.

e [earn a user classifier.

e Extract traces from the user models.

e Attempt to fool the classifier with the models’ traces.

o [f the model fails to fool the classifier, goto Step 2.
4. Tterate assistant design using the user models:

e Build/modify an automated assistant.

e Use the models to test the assistant.
5. Test the assistant with human operators.

We present an alternative method for this task: Derive a
set of user behavior models (from data collected from an
initial subject study), use them as surrogates to test different
designs for the assistant, and focus subsequent subject stud-
ies on the ones that performed well. The potential benefit is
a large savings in time and cost.

In this paper, we describe this method for acquiring user
models in Section 2 and its initial application in Section 3,
where the goal is to assist users with controlling a set of
(simulated) unmanned air vehicles (UAVs). Our application
involves RESCHU (Boussemart and Cummings 2008) sce-
narios that are designed to elicit information overload condi-
tions. We describe related work in Section 5, the limitations
of our method and for drawing lessons from this single case
study in Section 4, and conclude in Section 6 with sugges-
tions for future research.

2 Method

An overview of the method for acquiring user models and
using these for developing automated assistants is shown in
Table 1. In a traditional development cycle, developers build
an automated assistant, then test the performance of the as-
sistant by doing human user studies. Because user studies
are costly and time-consuming, this can lead to slow itera-
tions. In our approach, we use automated user models in-
stead of actual people for some of these iterations. User
models are fully generative in that they are given the same

observations that a human user would be given, and must
produce specific actions like a human user would. User stud-
ies using these models are fast, essentially free, and require
no human subjects approval (IRB). Thus, they provide a fast
approximation to humans to quickly ferret out significant
problems with the automated assistant. The questions arise
of how these models are acquired (Steps 1 and 2), how much
these models operate like human users (Step 3), and how the
models may be used in lieu of humans (Step 4). Finally, the
goal of the user model is not to eliminate human user stud-
ies completely, but to reduce reliance on them. Because the
user models are only approximations to human users, any fi-
nal assistant should be tested using a user study with actual
humans (Step 5).

Step 1. Gathering Traces from Human Operators.

Step 1 is to gather traces from human operators. A trace is
a recording of a user’s actions and the observations of the
environment given to him or her over the course of a single
trial in the decision support task. We collect n trials (typi-
cally about 10) from each of m users (8 or 9, but more would
be preferable). We assume that these trials are independent.
That is, we assume that the user does not significantly al-
ter his or her strategy through learning or fatigue during his
or her n trials. In practice, we reduce the amount of in-trial
learning by allowing the user ample time to familiarize him
or her self with the task before recording their traces. Aside
from a unique randomly assigned ID number, we record no
identifying information about each user (e.g., gender or age).

Step 2. Acquiring User Models from Traces

Step 2 is acquiring models from the traces collected in Step
1. Given a set of m - n traces (n traces for each of m users),
we acquire a model for each user by extracting feature vec-
tors from his or her traces (where a feature vector acts as or
sort of summary or footprint for each trace), then build the
model so that the feature vectors extracted from the model’s
traces are similar to those extracted from the user’s actual
traces. Thus, we can view our set of user models as varia-
tions of a single parameterized model that takes as input a
set of feature vectors, and interacts with the environment to
generate similar feature vectors. The benefit of this is that a
variety of user models allows us to test how an automated
assistant will perform for different types of users.

The feature vectors we extract should be broad enough
to encompass the user’s interaction style. For example, if
we simple extract the trace’s performance score (but no
other metric), it might be possible to achieve this score
with widely different interaction styles (especially for lower
scores). With many interdependent features, it becomes less
likely that we can generate a model for a user that has these
feature vectors, but operates in a markedly different style
from the user.

Once we have extracted our traces and feature vectors
from them, we will want to know which of these features are
most useful for characterizing our users and distinguishing
them from each other. We use a multiclass feature weighting
algorithm to help us identify which features are best for dis-
tinguishing individual users (in the case study below, we use

a variant of RELIEF (Kira and Rendell 1992)). Essentially,
we search for features that have high variance between users,
but low variance for vectors generated by a single user.

Given a set of weights signifying the relative importance
of individual features, we build a model by building an “ex-
pert” operator, then hobbling it so that feature vectors ex-
tracted from its traces match those generated by a partic-
ular human operator. The assumption here is that individ-
ual humans would perform perfectly except for their con-
straints, and these constraints account for much of the vari-
ation among individuals. For example, RELIEF might tell
us that “reaction time” is an important feature to emulate.
If our expert operator’s reaction time is negligible, and we
read a set of traces for user u whose average reaction time
is 310ms (with a standard deviation of 20ms), we restrict
our expert operator to respond to an events 95% of the time
between 270 and 350ms (i.e., what would be statistically ex-
pected given a Gaussian with u = 310ms, o = 20ms). Note
that the expert operator need not perform optimally.

Step 3. Evaluating User Models

Step 3 is evaluating the user models produced by Step 2.
We would like some assurance that our user models actu-
ally operate in the same style as the specific human users
they are meant to emulate. We test whether the user models
operate like humans by using a sort of automated “Turing
Test”. That is, we build a classifier that recognizes individ-
ual human users by their traces, then we see whether this
recognizer classifies the model for user u as u. If the classi-
fier thinks that the model for u really is u, then the model is
said to pass the automated Turing Test!.

Given n feature vectors for each of m users, building a
classifier is a straightforward multiclass supervised learning
problem. We do leave-one-out cross-validation on a suite of
classifiers with different parameters, choosing the classifier
and parameters that has the best average performance on the
test set.

Given a classifier and a set of feature vectors for user w,
we build a model for u as described in Step 2. With this
model, we generate t traces and extract feature vectors from
these traces. We then send these feature vectors to the classi-
fier and count the number of feature vectors that the classifier
classified as being generated by user .

If our classifier has low accuracy for classifying human
users, we should extract more features from the users’ traces
(resulting in longer feature vectors). If the classifier has high
accuracy, but the traces generated by the user model are eas-
ily distinguished from the actual human traces, then the user
model is said to fail the automated “Turing Test”, and the
model should be modified accordingly to better mimic the
user.

"We use the term “Turing Test” in quotes to distinguish it from
its more common usage involving human-level Al. Some impor-
tant differences between our “Turing Test” and the more common
variant are that ours (1) uses a computer (not a human) as judge of
similarity, (2) compares user models to other user models (not ac-
tual users), and, of course, that (3) the observations involve styles
of operation, not a chat terminal where the judge is allowed to in-
teract with the user model.

Step 4. Designing An Assistant Using User Models

Step 4 is using the user models (acquired by Step 2 and
proven acceptable by Step 3) to iteratively design an au-
tomated assistant. We assume that we have built an initial
automated assistant, and we would like to test it. Because
it has the same inputs and outputs as a human user, a user
model’s interface with the decision support task is the same
as that for a human. Therefore, to test a user model we only
need to define its interaction with the automated assistant,
then run the assistant on various users with varying user-
model/assistant interactions.

Since our initial human user traces were from a system
that had no automated assistant, we must guess how the hu-
mans might interact with the assistant. We can parameterize
this. For example, we might expect that a human user might
take the assistant’s suggestions p percent of the time, where
p is an adjustable parameter. The results of running a vari-
ety of users and parameters on an automated assistant can
then be analyzed to inform the next iteration of automated
assistant.

Step 5. Testing the Assistant with Human Subjects

Step 5 is testing the final automated assistant with real hu-
man operators. This step is the same as in a traditional de-
velopment cycle.

3 Case Study: A Multiple UAV Control Task

To illustrate our method, we acquired user models for a con-
trol task involving multiple UAVs, then used them to test
an automated assistant for the same environment. In this
case study, we investigate whether our method results in a
plausible interaction between an automated assistant and our
user models. In particular, we hypothesize that (1) increased
use of the automated assistant improves the user models’
performance, and (2) the increased performance is more
pronounced for models of lower-performing users. Further-
more, we hypothesize that (3) our user classifier will outper-
form a random baseline, and (4) our user model will be able
to “pass the automated Turing Test” (fool the user classifier)
more often than a random user model.

The RESCHU Simulator

For our case study, we use a variant of a simulator pro-
vided by Cummings et al. called Research Environment
for Supervisory Control of Heterogeneous Unmanned Ve-
hicles (RESCHU) (Nehme 2009), (Boussemart and Cum-
mings 2008), which simulates a task controlling multiple
unmanned aerial vehicles (UAVs).

The operator’s goal in this simulation is to engage as
many targets as possible during a 5-minute trial. A screen-
shot of the simulation is shown in Figure 1. The simula-
tor includes 5 UAVs, multiple targets (of which exactly 7
are always available), and hazard areas (of which 12 are al-
ways active). A user’s available actions are to change UAV
target assignments (change target), insert waypoints
(insert WP), move waypoints (move WP), delete way-
points (delete WP), instruct a UAV to engage a target at
which it has arrived (engage target), and do nothing

Figure 1: Screenshot of the supervisory control simula-
tion. Shown are UAVs (red circles), targets (green circles),
hazards (yellow concentric circles), waypoints (blue dots),
and projected flight paths (black lines). When a UAV arrives
at a target (as the two UAVs have near the top of the screen,
each shown as a red circle inside a green circle), it remains
motionless until the user instructs the UAV to engage the
target, at which point the target is acquired (and a new tar-
get appears), and the UAV is randomly assigned to an unas-
signed target. (See text for details.)

(NOP). If a UAV passes through a hazard area, it accumu-
lates damage. After a certain amount of accumulated dam-
age, a UAV is incapacitated. Each non-incapacitated UAV is
assigned to a target, and moves along its flight path (as deter-
mined by the waypoints the operator has inserted) at a fixed
rate until it arrives at a target, where it waits for the user to
engage the target. When a target is engaged, a new target
appears at a random unoccupied location, and the engaging
UAV is randomly assigned to an unassigned target.

Case Study, Step 1. Gathering Traces

We collected 10 traces from each of 8 human users. Each
trace recorded the user’s actions and the observations avail-
able to him or her while operating RESCHU for a 5-
minute period. Though we retained no identifying informa-
tion about the users, each user is referred to by an index from
1to 8.

Table 2: Features and Their Relevance

Feature Weight
average distance to hazard before action 1
tally: change goal 49
bigram tally: engage target—change goal .29
bigram tally: change goal—engage target .23
tally: engage target .18
bigram tally: change goal—add WP 13
bigram tally: change goal—change goal 12
tally: delete WP 12
average distance between UAVs 12
tally: add WP .09
tally: change WP .07
bigram tally: add WP—change goal .06
bigram tally: add WP—add WP .05
bigram tally: change goal—delete WP .05
average UAV idle time .04
bigram tally: change WP—engage target .04
bigram tally: engage target—add WP .02
bigram tally: add WP—change WP .01
bigram tally: add WP—delete WP .01
scores per action .00
tally: NOP .00
average time between hazard cross and action to fix .00
(All other bigram tallies) .00

Case Study, Step 2. Acquiring User Models

Because the number of possible observations a user
may receive in RESCHU is large (~10'2%), building an
observation-action model, such as that used by (Sammut et
al. 1992) and (§uc, Bratko, and Sammut 2004), was infeasi-
ble without a significant amount of state abstraction. Instead,
we followed the method described in Step 2 by extracting
feature vectors from the 80 traces, and using RELIEF to
help judge which features are most distinguishing for our
8 users (i.e., we want features that have high variability be-
tween users, but low variability within vectors generated by
a single user). We chose RELIEF over other feature weight-
ing algorithms because of its popularity and ease of imple-
mentation.

Feature Vector Extraction From each trace, we gener-
ated a set of 36 features. These include tallies over the 6
primitive actions, tallies over the 25 “bigrams” for the 5 non-
NOP actions (where A— B is the number of times B was the
first non-NOP action after A), the average proximity to a haz-
ard a UAV reached before a user rerouted the UAYV, the aver-
age distance between (or “spread”) of the UAVs, the average
time a UAV was idle (how long between when the UAV ar-
rived at its target and when the user engaged the UAV), the
average number of (non-NOP) actions the user took divided
by the user’s performance score (as a measure of action ef-
ficiency), and the average amount of time a user waited be-
tween when a UAV’s path crossed a hazard area and taking
action to reroute the UAV. Note that the number of engage
target actions is the same as the performance measure
(the number of targets engaged). These features are shown
in Table 2 sorted by their RELIEF score.

Construct an Expert Operator Since reaction time is a
limiting factor in human user performance for RESCHU, we
were able to build a simple rule-based “expert” operator that
outperformed our best human operator. The expert operator
uses the following rules:

1. if there is a UAV waiting at a target, engage that target.

2. else if the UAV target assignments are “suboptimal” (us-
ing a greedy nearest target to UAV calculation), reassign
the targets greedily (using change goals).

3. else if a UAV’s flight path crosses a hazard area, reroute
the UAV around the hazard (using add WP).

This simple operator performs well, averaging a score of
27.3 targets acquired per 5-minute session, compared to an
average of 21.7 targets acquired per session for the human
users. The highest scoring human user averaged 24.5 targets
per session.

Hobbling the Expert Operator This expert operator
served as a basis for constructing individual user models.
Based on Table 2, we constrained our expert operator to
mimic the user’s average distance to hazard before an eva-
sive action, the user’s average total number of change
goals, and the user’s average UAV idle time. For exam-
ple, the expert operator might delay engaging a target to bet-
ter match the user’s average UAV idle time. We chose these
features based on their RELIEF weightings and their ease of
implementation.

Case Study, Step 3. Evaluating the User Model

Since there is a good deal of interdependence among the fea-
tures in a user’s feature vector, we hypothesize that it would
be difficult to generate a trace that produces a similar feature
vector, but that operates with a markedly different style. We
implement the substeps of Step 3 and learn a classifier that
distinguishes human users by their feature vectors, extract
traces from the user models, then test whether the classifier
can distinguish human users from their models.

Learning a User Classifier For each of our 8 human
users, we have 10 vectors of 36 real-valued features. Thus,
learning a classifier is a straightforward application of mul-
ticlass supervised learning, with the classes being the 8 indi-
vidual users. We trained a suite of 35 classifiers using leave-
one-out cross-validation. Included in this suite were vari-
ous paramaterizations of Bayes Logistic Regression, Naive
Bayes, Gaussian Process Classifier, k-Nearest Neighbors,
Least-Angle Regression, Sparse Multinomial Logistic Re-
gression, Elastic Networks, and Support Vector Machines
(SVMs) with various kernels. The best of these classifiers
for our data was an SVM with a polynomial kernel (Poly-
SVM), which yields an average of 62.5% accuracy on the
test set (compared to 12.5% accuracy for a random classi-
fier).

Fooling the Classifier Using the user model, we gener-
ated 10 new traces for each of our 8 users with the aim
of mimicking that user. Poly-SVM’s classification accuracy
was 27.5% on these traces. That is, given a trace generated
by the model for user u, the classifier correctly identified the

trace as coming from user u 27.5% of the time. A random
classifier gives us 12.5% accuracy. Given our classifier, we
consider a practical upper limit to be 62.5% because this is
the accuracy on actual human traces.

Given these numbers, the user models are said to have
done poorly on the automated “Turing Test”. In practice, we
would want both the classifier and the model’s accuracy to
be much higher, and we would iterate more times on Step 2
to improve these figures. As the current work is a demonstra-
tion of principle, we hope to improve these figures in future
work.

Case Study, Step 4. Testing an Automated Assistant

In this step we describe how we built our automated assis-
tant, and how we used our user models to test it.

We implemented an automated assistant that constantly
“suggested” an action —the action the expert operator would
do— at every step of the session. The user (or the user
model) then had the choice of executing a primitive action,
or calling the assistant, which would then execute its sug-
gested action.

We had no model for how users would use an assistant (as
there were no assistants available to them when we collected
the traces), so we parameterized the user models’ interaction
with the assistant. In particular, we introduced a parameter
p that denotes the percent probability that a user model will
call the assistant at any particular time.

We ran the 8 user models varying p from 0 to 100%. Re-
sults are shown in Figure 2. Individual user models’ perfor-
mances are shown as light lines, with the average perfor-
mance shown as bold. From this figure, we see that while
the increased use of the automated assistant improves perfor-
mance for all user models, the user models with the lowest
non-assisted performance benefit the most from the model.
When p = 0, each model performs as if there is no assistant.
When p is set to 100%, the models all converge to operat-
ing identically to the expert operator. In practice, p = 100%
would be feasible for our case study because the number of
non-NOP suggestions given by the automated assistant aver-
ages 1 every 3.3 seconds (and the assistant rarely gives more
than one non-NOP suggestion per second).

4 Discussion

All four of our hypotheses from the beginning of Section
3 were supported by our case study: (1) increased use of
the automated assistant resulted in increased performance
of the user models, (2) the performance increase was more
dramatic for models of lower-performing users, (3) our user
classifier was correct an average of 62.5% on the test set,
better than 12.5% for a random classifier, and (4) our user
models passed the automated “Turing Test” by fooling the
classifier 27.5% of the time, better than 12.5% as would be
expected for a random classification. However, we hope that
this performance can be improved upon in future work.

Since the expert operator performs so well, we might be
tempted to simply let the expert operator take over (thus
completely automating the task), but doing so would break
the requirement that the human operator must maintain situ-
ation awareness of the task.

User Models' Performance using Adaptive Assitant

30

151

Number of Targets Acquired

10 8l0 100

40 60
% Usage of Assitant (p)

Figure 2: How the Assistant Helped the User Models. In-
dividual user models’ performances are shown as light lines,
with the average performance shown as bold.

5 Related Work

This work differs from most work on Imitation Learning
and Cognitive Behavioral Modeling in that it attempts to
mimic high-level feature vectors extracted from user traces,
rather than the process that generated these traces itself. This
includes work using cognitive architectures, such as ACT-
R (Anderson 1993), to model user behavior such as driv-
ing automobiles (Salvucci 2006) or credibility judgments in
micro-blogging (Liao, Pirolli, and Fu 2012). (For a survey
of work in Cognitive Behavioral Modeling, see (Zacharias,
MacMiillan, and Van Hemel 2008).)

Previous work on behavioral cloning characterized the
task as a state machine (e.g., as a Markov Decision Process),
and mimicked the user’s policy (Isaac and Sammut 2003),
(Galata, Johnson, and Hogg 1999), (Floyd and Esfandiari
2010), (Argall et al. 2009). As in our case study, the num-
ber of possible observations in an environment often makes
this approach impractical without state abstraction. Further-
more, much of this prior work focuses on performing well
on a specific task, such as flying well (Suc, Bratko, and Sam-
mut 2004), (Bain and Sammut 1995), instead of attempting
to accurately model humans. That is, this prior work focuses
on maximizing task performance regardless of whether the
behavior is human-like. To our knowledge, no previous work
focuses on modeling individual users, as our user models do.

The original developers of RESCHU have learned a user
model for RESCHU (Boussemart and Cummings 2008), but
this model is descriptive and cannot be used to generate ac-
tual operation in RESCHU, unlike our user models. Further-
more, this work does not model individual users, but an ag-
gregate of users.

6 Conclusion

We have introduced a method for rapidly developing auto-
mated assistants by acquiring user models, and we demon-
strated the method using a case study of RESCHU. Though

we’ve demonstrated the principle of the method, there are
still many issues to be addressed. For example, we have
not substantiated the hypothesis that a user model which
matches a user’s feature vectors also matches the user’s style
of operation. One future correction for this is an analysis
of the interdependence of the user’s features, akin to cross-
validation. For example, we can leave out the “bigram tally:
engage target—change goal” feature, then seeif a
user model that matches the other features also matches this
feature. In our case study, we only performed a single itera-
tion of steps 2, 3, and 4. In future work, we intend to extract
more features from our user traces (to increase classification
accuracy for users), update our models to reflect these new
features (to improve classification for the user models), and
thereby iterate steps 2, 3, and 4. In our case study, we also
left out Step 5, testing the assistant on human users, to vali-
date if the assistant helps out actual humans as well as their
models.

Acknowledgements

This research was sponsored by NRL. Marc Pickett per-
formed this work while supported by an NRC postdoctoral
fellowship at the Naval Research Laboratory. The views and
opinions contained in this paper are those of the authors, and
should not be interpreted as representing the official views or
policies, either expressed or implied, of NRL or the DoD.

References

Anderson, J. R. 1993. Rules of the Mind. Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robot. Auton. Syst. 57:469-483.

Bain, M., and Sammut, C. 1995. A framework for be-
havioural cloning. In Furukawa, K.; Michie, D.; and Mug-
gleton, S., eds., Machine Intelligence 15, 103—129. Oxford
University Press.

Boussemart, Y., and Cummings, M. 2008. Behavioral recog-
nition and prediction of an operator supervising multiple
heterogeneous unmanned vehicles. In Humans operating
unmanned systems.

Floyd, M. W., and Esfandiari, B. 2010. Toward a Domain-
independent Case-based Reasoning Approach for Imitation:
Three Case Studies in Gaming. In Workshop on Case-
Based Reasoning for Computer Games at the 18th Interna-
tional Conference on Case-Based Reasoning, ICCBR 2010,
Alessandria, Italy, July 19-22, 2010. Proceedings, 55-64.

Galata, A.; Johnson, N.; and Hogg, D. 1999. Learning Be-
haviour Models of Human Activities. In In Proc. BMVC,
12-22.

Isaac, A., and Sammut, C. 2003. Goal-directed learning to
fly. In Fawcett, T., and Mishra, N., eds., ICML, 258-265.
AAALI Press.

Kira, K., and Rendell, L. A. 1992. A practical approach to
feature selection. In Sleeman and Edwards (1992), 249-256.

Liao, Q.; Pirolli, P.; and Fu, W. 2012. An act-r model of
credibility judgment of micro-blogging web pages. ICCM
2012 Proceedings 103.

Nehme, C. 2009. Modeling Human Supervisory Control
in Heterogeneous Unmanned Vehicle System. Ph.D. Disser-
tation, MIT Dept. of Aeronautics and Astronautics, Cam-
bridge, MA.

Ratwani, R.; McCurry, J.; and Trafton, J. 2010. Single
operator, multiple robots: an eye movement based theoretic
model of operator situation awareness. In Proceeding of the
5th ACM/IEEE international conference on Human-robot
interaction, 235-242. ACM.

Salvucci, D. 2006. Modeling driver behavior in a cognitive
architecture. Human Factors: The Journal of the Human
Factors and Ergonomics Society 48(2):362-380.

Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D. 1992.
Learning to fly. In Sleeman and Edwards (1992), 385-393.
Shanker, T., and Richtel, M. 2011. In new military, data
overload can be deadly. New York Times January 15.
Sleeman, D. H., and Edwards, P., eds. 1992. Proceedings
of the Ninth International Workshop on Machine Learning
(ML 1992), Aberdeen, Scotland, UK, July 1-3, 1992. Morgan
Kaufmann.

éuc, D.; Bratko, I.; and Sammut, C. 2004. Learning to fly
simple and robust. Machine Learning: ECML 2004 407—
418.

Zacharias, G.; MacMillan, J.; and Van Hemel, S. 2008. Be-
havioral modeling and simulation: from individuals to soci-
eties. National Academy Press.

