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Introduction

Motivation |

s

& o |¥

m For vision, people have idea of angle of rotation

m For sound, people have idea of pitch change, speed change

m SPEED-CHANGE in sound is like SCALING in vision
(People can see this relation)




Motivation |l

Slide 3/45 Computers start with Raw Sensors

Introduction : . Sensor 1274
! Value = OFF

Sensor 0351
; Value = ON

] Sensor 2409
1 Value = OFF
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Introduction

Computer sees this:

{ S0002=ON, 5S0017=0ON, S0048=0ON, S0055=0ON, S0056=0ON, S0117=0ON,
S0175=O0N, S0180=0ON, S0197=ON, S0233=0N, $0269=0N, 50284=0N,
S0341=O0N, S0351=0N, S0404=O0N, S0444=0N, S0483=0N, S0490=0ON,
S0551=0N, S0567=ON, S0573=0N, 50623=0ON, S0711=0ON, S0729=0ON,
S0763=0N, S0779=0ON, S0798=0ON, 50827=0ON, S0833=0N, 50859=ON,
50947=0N, 50956=ON, $1027=0N, $1043=0ON, S1132=0N, S$1137=0ON,
S1188=0N, S$1214=0N, S1239=0N, $1244=0N, S1275=0N, $1305=0ON,
S1308=0N, $1352=0N, S1395=0N, $1452=0N, S1555=0N, $1572=0N,
S1579=0N, $1582=0N, S1631=0N, $1651=0N, S1655=0N, S$1771=0N,
S1796=0N, $1853=0N, S1891=0ON, $1898=0ON, S1968=0N, $2059=0N,
$2129=0N, $2137=0N, $2161=0N, $2186=O0N, $2195=0N, $2206=0N,
$2214=0N, $2218=0N, $2227=0N, $2247=0N, $2258=0N, 5$2308=0N,
5$2325=0N, $2344=0N, $2355=0N, $2363=0N, $2398=0N, 5$2406=0N,

SO000=OFF,  SO001=OFF,  S0003=OFF, etc... (all 2,419 other sensors are OFF) }
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Introduction



Motivation V

Slide 6/45 Can’t rely on knowledge-engineering
E.g., Highway Traffic speed sensors

Introduction

L

s .
P




Problem, Claims, & Evaluation Criteria

Slide 7/45 Problem Statement:
How can a computer develop rich relational theories from raw sensor data?
Claims:

Introduction
Partially implemented design for bridge from sensors to relational theory

1st link of bridge builds and uses conceptual structures
Evaluation:

Bridge story should be elegant. We rely on a few principles:
m Minimum Description Length (MDL)
m “Signatures” for recognizing patterns and binding (HMax idea)
m “Crunching’ by finding big/frequent overlap to “explain”’ data
System should be independent of modality (vision, audio, etc.)
® Minimal innate knowledge
m Should work on wide range of domains
m Might even be in 5 Dimensional world
Theory learned by the system should
m allow for compression of data Wolff (2003)
m contain concepts useful for tasks



Solution Overview: The Bridge
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lPhase 2:
Posits relations| | Discovers Creates causal

| mepeinss |y Grente

(partially
fmplamenteay|  loutinea)

partially
implemented)

Introduction

m All thesis work is building or testing parts of bridge

m Test on multiple disparate domains
m Concrete “side applications” along the way

m Data Compression, Macros in RL, Semi-supervised Learning
m A few recurring principles: MDL, Signatures, Crunching
m Phase 1 is core of dissertation
m Other phases are bonus
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Phase 1:

A Feature-Set

Ortolog Creating A Feature-Set Ontology

Phase 2: Phase s
Posits relations iscove
mapping
partia
implemented) (pardally




Related Work

view-tuned cells
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“complex composite” cells (C2)

“composite feature” cells (S2)

HMax

: : SETDO @ oo
A et Riesenhuber & Poggio (1999) ~ R prsceams (€1)
Ontology =2 DN =2 =2N = simplecells (S1)
Tl —
" — weightedsum
B
tnputimage

32x32 pixels

HTMs
Hawkins & Blakeslee (2004)

Neither say how structure is built autonomously



Representation
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A Feature-Set
Ontology

m Like HMax & HTMs
m Can represent invariance
m Uses “signature” idea, like hash or checksum



Parsing and Inference with An Ontology
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Lo s “Inference” does bottom-up “abduction” & “top-down"” unfolding like HT Ms:

m AND nodes want all their children to be ON
m OR nodes want at least 1 child ON

m All nodes want to be “explained” from above
A Feature-Set L .
Girissllsrsy B (Can have inhibitory connections too)
m “Parse”: Minimal* set of ON/OFF node settings to re-infer inputs
m Best parse minimizes “Probabilistic MDL” function

Er (Ri) = —log, (P (Dj|Ri, 2)) — ereRi log, P (r|2)
m Parse algorithm searches for this
m Optimal Parsing is NP-Hard (proof in thesis)




Building An Ontology: Chunking

Terminology note:
Ontol system that builds and uses ontologies
The Cruncher part of Ontol that builds ANDs
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How Cruncher Works:
® Search to minimize
E(9) = kI~ 3, maxe, (log, (P (DR, D) + k5, log, P (1190))
A Feature-Set m “The Cruncher" does this by recursively squeezing out feature-set overlap.
Ontology Eg., if
w S1={A, B, C, D, E}
m S2={A, B, C, D, F, G}
m S3={A, B, C, not D, F, G}
= DL =17
m Then, new set N1 = S1 N S2={A, B, C, D}. Then
m S1={N1i, E}, S2 = {N1, F, G}, S3 = {N1, not D, not D, F, G}
m DL =14
m Then, new set N2 = S2 1 S3 = {N1, F, G}. Then
m S1 ={N1, E}, S2 = {N2}, S3 = {N2, not D, not D}
= DL=13

Cruncher Algorithm:

// Returns an ontology that compactly expresses S
Cruncher(S) (where S is a set of attribute-value sets)
let B be a set of ConceptNodes such that S
foreach attribute-value A in S there is a corresponding ConceptNode c in B
such that A € c.hasA and c.isA = ()
while we are still decreasing the description length of B
candidates = findAllintersections (B)
// score is the potential decrease in description length
compute score(B, candidate) foreach element in candidates
let best be the highest scoring candidate
if score(B, best) > 0 then let B = replaceBest(B, best) + best
return B



Ontology Creation with The Cruncher
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A Feature-Set
Ontology

m Cruncher forms taxonomic categories naturally
m Penguin in multiple classes
m Octopus erroneously grouped with Amphibians:
eggs aquatic predator haslegs hair domestic breathes toothed backbone
Octopus  yes yes yes yes no no no no no
Amphibians yes yes yes yes no no yes yes yes
Invertebrates ? ? ? ? ? ? ? no no
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A Feature-Set
Ontology

Crunching Patches from Natural Images

m In Zoo ontology, node102 = {toothed, hair, milk, 4-legs} (i.e., “Mammal")
m What do concepts for other Crunched feature-set sets look like?

Concepts Learned

N

m These concepts are useful for describing dataset
m Contiguous chunks
m Cruncher begins with no knowledge of which pixels are next to which



Evaluating Ontol/Cruncher

Slide 16/45 How to evaluate?

m Can eyeball zoo dataset, but many others too complex
m Primary goal: help span gap between raw sensors and rich theory
A Feature.Set (difficult to gauge progress)
Ontology m Applications: Ontol/Cruncher developed for main goal,
but works on “side applications” too:
m Compression
m Macro-actions in Reinforcement Learning
m Semi-supervised Learning

m Test on range of well-known UCI datasets

Dataset Description Prediction
connect-4 States of Connect 4 boards win, loss, tie
house-votes-84 Congressional voting records democrat, republican
kr-vs-kp Chess endgame features white win or nowin
mushroom Mushroom features poisonous or edible
nursery Nursery schools features recommendation: very, not, priority, etc.
SPECT Features from cardiac images normal or abnormal
tic-tac-toe tic-tac-toe game states X win or nowin

00 Features of animals mammal, amphibian, fish, etc.



Compression Performance of Ontol/Cruncher
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Compression (Lower is Better)

Ontol m
A Feature-Set 16 - er—a
Ontology

Percent of Original File

m Ontol not for all text files (just feature-set descriptions)
m Lossless because files are sorted (otherwise add log, (|items|!) to specify ordering)
m Cruncher doesn’'t compress gensyms (so use LZ to do this)



Application: Creating Macro-actions in RL

(Pickett & Barto (2002))
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et m Crunch policies from many MDPs with same structure but different reward

m Use “crunched” subpolicies as policy building blocks or “macro-actions”

A Feature-Set
Ontology




Application: Creating Useful Macro-actions
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Results for Gridworld (Higher is better)

A Feature-Set 10000

Ontology

Average Cumulative Reward
2 @
2 2
g g
g B

IS
3
3
3

2000

0 05 1 1.5 2 25 3
Time Steps 5

Averaged over 100 runs. Does well on other domains too (see’ Thesis)



Application: Semi-supervised Learning
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Application to
Supervised
Learning

m Related Work: ILP Muggleton (1996)
m Learns from handful of positive training instances




How To Learn from a Few Positive Instances
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Penguin

Application to
Supervised
Learning

Bayesian Energy Function: Ess (M) = |D| logy N (M) + |[M|log, |U| — ZM,-eM logy N (M;)

Build ontology from unlabeled training set

Search for Boolean expression M (which may use nodes in ontology), s.t.
B M is True for all positives
B M is False for negatives (if any)
B M minimizes Egs (M)

(Negatives unnecessary, but can be used)



Semi-supervised Experiment Setup

Experiment: given P & N (# of Positive & Negative instances to use):
& unlabeled training set
& labeled training set

& labeled testing set
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Build ontology from unlabeled training set
Applcation to Average over 100 trials:
f;‘;’fn'iv,,";“' randomly pick class to learn from /abeled training set
randomly pick P positive instances from class (& N negatives)
search for Boolean expression M to minimize Es (M)
use M to classify testing set




Results from Semi-supervised Learning
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Results for P =5 and N = 0 (Higher is better, Red = 95% conf.)

100

Baseline
Ontol mwsses
ILP me—

Application to
Supervised
Learning

Accuracy

% S,
T, X,
3 >

m Ontol significantly outperforms ILP on zoo and connect-4
m Ontol is never significantly worse than ILP
m Underperform Baseline (“everything is most common class”)? How?

Overspecialization:
E.g., "Mammal": gorilla, monkey, chimpanzee, orangutan, baboon



Results from Semi-supervised Learning:
Increasing Training Size

Slide 24/45

Ontol  mw
ILP rowswss

Application to
Supervised
Learning

Accuracy

DR R S CHE A )
2 2 o & & & 2 9 B v B %

S
&
NG

Size Labeled Training Set (Positives, Negatives)




Back to Ontology Building

Slide 25/45

m Crunching gives ANDs
m What about ORs?

Application to / \

Supervised
Learning H
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Application to
Supervised
Learning

Building ORs: Merging

m Find ORs by Crunching context

m Merging finds “OR"s or Equivalence Classes

m Interchangeable concepts form OR

Jersey Ciy—

Sonvak!

Stamford i

rggen cod

Roghale . SLtE

ork S Geutoun Bmvmn

2 erpstead

ol

Souhba

oo
o
o0

= g
’ 4 o |
v, York [T mm

Fremceae =
e Famorticenl prisy
Wi by e
Pitsfeld Pitsfield
o )
w:
origton
gl
P waten
o
@3 ’
oS |
New Havel P
Bridgeport ), 5 Bridgeport |
> Shler onmu gty s
VA ? (T oomanl

Plersey ity Hemps(esﬂ Great,
South Bay




Building ORs: Merging

Slide 27/45 € {cc, dd, gg, 4C, 5A, 6B, 7B}
&' {aa, bb, dd, 1F, 24, 34}
“grammar” for creating bags of features. {cc, dd, ee, 4C, 54, 6C, 7B}

(< doubles > < M >}

<s>
SME = <A (with probabilty 4) | < B > (with probabily .6) .
S8z SizsinsimeTe “Context” as Cooccurrence Matrix
< doubles > <AA> < BB > < CC>< DD > < EE > < FF > < GG > T T
<1> 11810 |10] 1E | 1F R H
225 = mimx|w
<35 = a|am|ac|a)E|w ! t
4> = a|s|ac : ;
5> = slss|sc|e|E t {48 occured with
Zes i |68 |6 |60 | 6 | oF A =™ 6C 392 times
<75 |78 i
<M = a0
icati <BES = w0
Appluca_non to SR EZowh
Supervised <D > o
i <EE> oo
Learning $EE = ome
<G> = om0 a 7A occured with
{A H t 9g 1444 times

Each row really just bags of features
So, Crunch context to get candidate Equivalence Classes
Q@

Will integrate with crunching in future work.
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Phase 2:

Parameterized Concepts

Parameterized
Concepts

lPhase 2:
Posits relations.

partially i
partially
implemented) implemented)




Parameterized Concepts
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Sensor 1274
Value = OFF

Sensor 0351
Value = ON

Merging alone won't give us translation Sensor 2409

Need isomorphism or “analogy”

Parameterized
Concepts I

L
(=) (=) 1)
@@@@@ @O0 0

m How to represent parameterized calls?
m How to efficiently find behaviorally similar areas?
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Mechanics of Parameterized Calls

ololc]

©

©

©)

)

©

O

®

&

m Extract out overlap

m Parameterize differences

m Gate uses BIND nodes to control who calls region



Mechanics of Parameterized Calls

Slide 31/45 Can also represent combinatorics

Parameterized
Concepts




Behavioral Signatures
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m To find similar regions, create signatures
m Same core idea as representing “dog” shape (HMax)

To “sample” from inputs of graph (using sample size = 3):

Grab 3 nodes randomly (e.g. C, Y, & Z)

Parameterized
Concepts

Make Karnaugh map for X

over all 8 combos of ON/OFF for C, Y, & Z

Tally up 1 more for TTFFTFTT

n Canonicalize:
Try all 3! orderings of C, Y, Z

to find 1st alphabetically
CITITIFIF (Do steps 2-4 for K-maps for D & W too)
~C|T|F[T|T
Zl ~z Z ﬂ GOTO 1 and Repeat
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Parameterized
Concepts

A_¢®
o

(Y QR )
OBOBCHHLOOB

e eDoe

SOOB T OB

C ()
O
(X QL

OTOTCHLOOL

Tally

2000

1500

1000

500

Behavioral Signatures: Results

lic - Dl

926,354
9,109,628
9,546,816
5,544,956
5,843,940

301,794

(9.72%)
(30.49%)
(31.21%)
(23.79%)
(24.42%)

(5.55%)
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Phase 3:

Finding Useful Mappings

lPhase 2: [rase3d
Posits relations.

Finding Useful
Mappings

partially ——
implemented) P




The Problem of finding Mappings
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Finding Useful
Mappings




The Problem of finding Mappings Il

Slide 36/45 We assume Phase 2 will give us something like this.

1x ~
1x =
3x1

Finding Useful
Mappings

/ \ |

Hl
ln E



What Makes a Useful Mapping? MDL!
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Mapping is set of ordered pairs of features. E.g.:

T
WTW i“Emman

T

T

i Smaun saw S|

T &

Mapping37 (Rotatel5°)

000.05 — 015.05
000.10 — 015.10

Finding Useful 000.15 — 015.15
Mappings 000.25 — 015.25
005.10 — 020.10

005.15 — 020.15

090.05 — 105.05

090.10 — 105.10

090.15 — 105.15

Dog on right = Mapping37(Dog on left) +-any tesidual



Finding Useful Mappings: Algorithm
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m Find mapping to minimize description length
m Search is 2-pass, like EM:

m Which features map to which?
m Which instances map to which?

m Once mapping found, use to reduce DL, then repeat

Finding Useful m like Cruncher!
Mappings

mat
o

WITmT BT

FrrT i Suusi

TTrrrTT T

COmCT
™
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Finding Useful
Mappings

Results: Finding Rotations

Compression Savings

Compression Savings Using Discovered Mappings

80000

70000

60000

50000

40000

30000

20000

10000

(Higher is better.)

%
%
Mapping Rotation Angle

Discovered mmmm
Hand Picked mmm—
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Phase 4:

Comparing Apples to Angles

(partially
implemented)

Apples to

Angles




Building & Using Graphs for how Mappings Behave
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Apples to
Angles




Building & Using Graphs for how Mappings Behave

Slide 42/45

0.1
030.0570.030.65,
10-0.

o5,
156.10-0.150.16

150.10-0.

Apples to
Angles

150.0570.030.65,
150.10-0.030.16

85-0.090
00.10=0.090.10,
030.05=0.120.05,
12020,
150,05,
150.10,
000,05,
00,10,
030.05,
030,10

150.10-0.060.16



Substantiation of Claims
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|- - —
—
Phase 4: ‘
e
Crentes cousal
L PN

partially n outlined
implemented) kou!ll ed) . g

lPhase 2:
Posits relations.

partiall
implemented)

Design provides plausible story for getting rich theory from raw sensor data
Conclusion m Phases 2 & 3 provide proof-of-concept for how core ideas can bridge gap

m Phase 2: Representing and Finding Behavioral Isomorphisms

m Phase 3: Finding and Using Generalized Mappings (e.g., Rotation)
Phase 1 creates useful structure from feature-sets

B Does better compression than Lempel-Ziv alone on feature sets

m Finds useful macro-actions for Reinforcement Learning

m Learns concepts from a handful of positive training instances



Future Work: Fill In Bridge
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The Speed Prior
m The MacGlashan Transform: Representing Relational Structures
as Feature-Sets
m Meta-Cognition: Feeding the Dragon its Tail
m Future work for Phase 1
m Combined Chunking and Merging
m Splitting
m Incremental Learning
m Wide Signatures and Low Resolution
m Constraint Satisfaction Search
Future work for Phase 2
m Segmentation
® Munching behavioral signatures
Future work for Phase 3
m Finding Primitive Mappings and Minimal Mapping Set
m Future Application: Using Mappings for Speaker Classification and
Identification

Conclusion
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