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Abstract

Since Emile Borel’s study in 1938, the game of poker has
resurfaced every decade as a test bed for research in mathe-
matics, economics, game theory, and now a variety of com-
puter science subfields. Poker is an excellent domain for AI
research because it is a game of imperfect information and
a game where opponent modeling can yield virtually unlim-
ited complexity. Recent strides in poker research have pro-
duced computer programs that can outplay most intermediate
players, but there is still a significant gap between computer
programs and human experts due to the lack of accurate, pur-
poseful opponent models. We present a method for construct-
ing models of strategic deficiency, that is, an opponent model
with an inherent roadmap for exploitation. In our model, a
player using this method is able to outperform even the best
static player when playing against a wide variety of oppo-
nents.

Introduction
The game of poker has been studied from a game theoretic
perspective at least since Emile Borel’s book in 1938 (Borel
1938), which examined simple 2-player, 0-sum poker mod-
els. Borel was followed shortly by von Neumann and Mor-
genstern (v. Neumann & Morgenstern 1944), and later by
Kuhn (Kuhn 1950) with developing simplified models of
poker for testing new theories about mathematics and game
theory. While these models worked well and served as a cat-
alyst for research in the emerging field of computer science,
they are overly simple and less useful in today’s research.
Practical applications for research in full-scale adversarial
games of imperfect information are pervasive today. Goods,
services and commodities like electricity are traded and auc-
tioned online by autonomous agents. Military and home-
land security applications such as battlefield simulations and
adversary modeling are endless and the entertainment and
gaming industries have used these technologies for years.

In the real world, self interested agents are everywhere,
and imperfect information is all that is available. It is do-
mains such as these that require new solutions. Research in
games such as poker and bridge are at the forefront of re-
search in games of imperfect information.
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Opponent modeling has been identified recently as a crit-
ical component in the development of an expert level poker
player (Billings et al. 2003). Because the game tree in
Texas Hold’em, a popular variant of poker, is so large, it is
currently infeasible to enumerate the game states, let alone
compute an optimal solution. By using various abstraction
methods, the game state has been reduced but a subopti-
mal player is not good enough. In addition to hidden in-
formation, there is misinformation. Part of the advanced
poker player’s repertoire is the ability to bluff. Bluffing
is the deceptive practice of playing a weak hand as if it
were strong. Indeed there are some subtle bluffing practices
where a strong hand is played as a weak one early in the hand
to lure in unsuspecting players and with them more money
in the pot. These are just a few expert-honed tricks of the
trade used to maximize gain. In some games it is appropri-
ate to measure performance in terms of small bets won. This
is often applied to games that are played over and over again
thousands of times. The more exciting games such as No
Limit Texas Hold’em have much greater short term winning
potential and often receive more attention. It is this vari-
ant of poker that is played for the Main Event at the World
Series of Poker (WSOP) as of 2006 which establishes the
world champion.

Rather than developing a model of an opponent’s strat-
egy, we seek to develop a model of strategic deficiencies.
The goal of such a model is not to predict all behaviors but,
instead, identify which behaviors lead to exploitable game
states and bias an existing decision process to favor these
states.

We developed a simulator for 2-player no-limit Texas
Hold’em to demonstrate that models of weakness can have a
clear benefit over non-modeling strategies. The agents were
developed using generally accepted poker heuristics and pa-
rameterized attributes to make behavioral tweaks possible.
The simulator was also used to identify emergent properties
that might yield themselves to further investigation. In the
second set of simulations, the agents are permitted to take
into account a rudimentary model of an opponent’s behavior.
This model is comprised of tightness which is characterized
by the frequency with which an agent will play hands. This
taxonomy of players, including aggression (i.e., the amount
of money a player is willing to risk on a particular hand),
was first proposed by Barone and While (Barone & While



1999), (Barone & While 2000) and makes a simple yet mo-
tivating case for study.

We constructed a model for a poker player that is pa-
rameterized by these attributes such that the player’s be-
havior can be qualitatively categorized according to Barone
and While’s taxonomy. Some players in this taxonomy
can be considered to have strategic deficiencies that are ex-
ploitable. Using this model, we investigate how knowledge
of a player’s place in the taxonomy can be exploited.

The remainder of this paper is organized as follows. The
next section describes related work on opponent modeling
and prior attempts to solve poker. We then describe our ap-
proach to modeling opponent’s deficiencies and discuss our
experimental design to test the utility of our models. Next,
we evaluate the results of our experiment and discuss the
implications before concluding and pointing toward ongo-
ing and future work.

Poker and Opponent Modeling
The basic premise of poker will be glossed over to present
some of the terminology used in the rest of the paper. The in-
terested reader should consult (Sklansky & Malmuth 1994)
for a proper treatment of the rules of poker and widely ac-
cepted strategies for more advanced play.

Texas Hold’em is a 7-card poker game where each player
(typically ten at a table) is dealt two hole cards which are
private and then shares five public cards which are presented
in three stages. The first stage is called the flop and consists
of three cards. The next two stages each consisting of one
card are the turn and the river.

A wide variety of AI techniques including Bayesian play-
ers, neural networks, evolutionary algorithms, and deci-
sion trees have been applied to the problem of poker with
marginal success (Findler 1977). Because of the complexity
of an opponent’s behavior in a game such as poker, a vi-
able alternative is to model opponent behavior and use these
models to make predictions about the opponents cards or
betting strategies.

There have been recent advancements in poker and oppo-
nent modeling. Most notable perhaps is the University of
Alberta’s poker playing bot named Poki, and later a pseudo
optimal player PsiOpti (Davidson et al. 2000).

Many learning systems make the assumption that the op-
ponent is a perfectly rational agent and that this opponent
will be making optimal or near-optimal decisions. In poker,
this is far from the case. The large state space in this game
and the rich set of actions a player can choose from creates
an environment with extraordinary complexity. The ability
to bluff or counterbluff and other deceptive strategies create
hidden information that is not easily inferred. In addition,
the high stakes that usually accompany poker and the psy-
chological aspect of the game lead to interesting and bizarre
plays that sometimes seem random. In variants of Texas
Hold’em such as No-Limit, a player can risk their entire
stack at any time.

Models of opponent behaviors can provide useful advan-
tages over agents that do not use this information (Billings
et al. 2003). In games of imperfect information this be-

comes especially apparent since the hidden cards and misin-
formation provide richness in terms of game dynamics that
does not exist in most games. A special case of an oppo-
nent model is a model of weakness. By determining when
an opponent is in a weak state, one can alter their decision
process to take advantage of this. Using a simpler model has
advantages as well. For example, since the model is only
used when these weak states are detected, there exists a de-
cision process that is independent of the model. That is, the
model only biases or influences the decision process rather
than controlling it.

Markovitch has established a new paradigm for modeling
weakness (Markovitch & Reger 2005) and has investigated
the approach in the two-player zero-sum games checkers and
Connect Four. Weakness is established by examining next
board states from a set of proposed actions. An inductive
classifier is used to determine whether or not a state is con-
sidered weak using a teacher function and this determination
is used to bias the action selection policy that is being used.

Markovitch addresses the important concepts of risk and
complexity are addressed. The risk involved is that the use
of an opponent model would produce an incorrect action
selection- perhaps one with disastrous consequences for the
agent. Markovitch has established that complexity can be
managed by modeling the weakness of an opponent rather
than the strategy. By modeling weakness, an agent works
with a subset of a complete behavioral model that indicates
where exploitation can occur. Exploitation of weakness is
critical to gain an advantage in certain games like poker.
Risk is reduced in the implementation by designing an in-
dependent decision process that is biased by the weakness
model. This way, an incomplete or incorrect model will not
cause absurd or detrimental actions to be selected.

Their algorithm relies on a teacher function to decide
which states are weak. The teacher is based on an agent
which has an optimal or near optimal decision mechanism
in that it maximizes some sort of global utility. The teacher
must be better than a typical agent assuming that during or-
dinary play, mistakes will be made from time to time. The
teacher is also allowed greater resources than a typical agent
and the learning is done offline. It is also possible to im-
plement the teacher as a deep search. Weakness is distilled
to a binary concept which is then learned by an inductive
classifier.

They evaluate their teacher-driven algorithm on 2-player,
zero-sum, perfect information games (e.g., Connect Four,
checkers). In this research, the concept of models of weak-
ness is taken to a new level by applying it to the game of
heads up no-limit Texas Hold’em and excluding the use of
a teacher. Heads up poker is still a 2-player, zero-sum game
but features imperfect information in the form of private
cards. Imperfect information makes poker a difficult do-
main because there are hundreds of distinct hand rankings
with equal probability and near continuous action sets lead-
ing to millions of game states. It is computationally diffi-
cult to evaluate all of these states in an online fashion. A
shallow lookahead is simple in board games like checkers
because the number of actions from each state is relatively
small. The states can be enumerated and evaluated with a



trivial amount of computational power. The ability to enu-
merate board states and look ahead to evaluate them is a
convenience that is not available in games such as poker.

Behavior Space Analysis and Strategic
Deficiency

Since strategy can be quite complex, modeling it in a game
like poker is computationally burdensome. Since most play-
ers follow certain established ’best practices’ it makes sense
to look for the places where players deviate from these gen-
erally accepted strategies. Being able to predict what cards
an opponent holds is very important. In the showdown
(when players who have made it this far compare cards) the
best hand wins. Knowing what an opponent’s hole cards are
can make a huge difference in the way the hand plays out.
Knowing you possess the best hand is reason to go all the
way no matter the cost. At this point the only concern is
how to extract more money from one’s opponent. The sec-
ond most important reason to have a model is being able to
predict an opponent’s betting behavior. This includes react-
ing to one’s own bets. Being able to predict an opponent’s
reactions will allow a player to extract maximum winnings
from them. Being able to maximize winnings means turning
a mediocre pot into substantial earnings. It is also valuable
to eliminate opponents in tournament settings. The idea be-
hind modeling opponents’ strategic deficiencies is that it is
a simple but effective way to maximize winnings.

We now present the concept of a player behavior space us-
ing features proposed by Barone and While illustrated in fig-
ure 1. The purpose of this figure is to illustrate how behav-
iors can be mapped out in space and observing a player’s tra-
jectory through this space can reveal a lot about the player’s
skill level, playing style, and emotional state.

Using the four broad categories Loose Passive, Loose Ag-
gressive, Tight Passive, Tight Aggressive, we can observe a
player in the state space shown in figure 1. In this space,
some strategies are clearly inferior to others. For exam-
ple, an agent at the extreme bottom of the figure will have a
overly strong tendency to fold (and will fold every hand if
completely tight). On the other extreme, a completely loose
agent will refuse to ever fold, and will be betting on cards
that have a low probability of winning. A similar balance
must also be made with an agent’s aggression.

Because of the complexity of poker, it is necessary to use
common heuristics for playing to identify exploitable con-
ditions. These conditions come in a variety of formats and
it is required to use different classifiers with different fea-
tures to model them. For example, aggressive styles can be
discovered by looking at how much an opponent bets.

In figure 2, we see how a player’s strategy might change
over the course of several hands. For example, the “tight, ag-
gressive” player in the lower right corner might have a series
of wins and follow trajectory (a), causing it to be less tight
(and fold less often), or the player might lose a few high-
stakes hands and follow trajectory (b), causing it to keep its
bets lower. However, our model assumes a player remains
consistent over multiple hands. Investigating the effects of
game events on a player’s strategy is left for future work.
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Figure 1: Player Behavior Space

A strategic deficiency in general is a lapse in a poker
player’s ability to make sound decisions consistently. This
deficiency could be attributed to a lack of experience in a
human player or perhaps a static action selection mechanism
employed by a computer program. These strategic deficien-
cies are quasi permanent and can be exploited over and over
again. There are also temporary deficiencies, such as emo-
tional transformations, which are more difficult to capitalize
on, but these are beyond the scope of this paper.

An example of a weakness is a player that should fold a
weak hand when an opponent makes a large raise early on.
Of course, staying in could lead to an effective bluff, but
doing this too often is indicative of a beginners reluctance to
fold when they have already committed some money to the
pot. This can be exploited by making moderately aggressive
bets.

Empirical Results
We created several experiments to evaluate the importance
of modeling strategic deficiency. There are many such mod-
els with very different feature spaces, and we present one
such models will be explored in this section: tightness (we
empirically discovered that tightness, and not aggression,
seemed to be the dominant factor in our models).

We build a poker simulation to perform an empirical eval-
uation of behaviors and game dynamics. The program sim-
ulated repeated games of heads up (2-player) no-limit Texas
Hold’em. The two players were coded so that their tight-
ness could be scaled between 0 and 1. A tightness of 0,
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Figure 2: Behavioral Transformations

for example, would mean that an agent would never fold
and a tightness of 1 meant that the agent would fold any
time money was required to meet a bet or raise. The agents
also took into account their hand strength by computing an
approximation of their probability of winning. Each agent
used Monte Carlo simulations to determine their probabil-
ity of winning at each stage of betting using the cards that
were visible to them. The agent would deal out some num-
ber of random hands and count how many times it would
beat those hands, assuming an equal distribution. In order to
generate realistic game play, the agents played against each
other with random settings for these parameters.

A “hand” of poker consists of a single set of up to 9 cards
(2 cards for each player, and 5 table cards). A “game” of 2-
player poker consists of several hands. For our experiments,
a game started with each player having 100 betting units,
and the game ends when one of the players has taken all
the betting units from the other player (thus ending with 200
units).

One of the primary goals was to determine if there was
an optimal static strategy that would represent the strongest
player and to make sure that these parameters were not on
the boundaries of our behavior space. The second research
goal was to examine the behavior of a dynamic player that
is, an agent that can alter its parameters in response to an op-
ponent’s playing style. The way this was accomplished was
to allow one of the agents to know the other agent’s static
parameters. This is realistic to assume since with repeated
interaction one can generally infer an opponent’s tightness
and aggression whether playing against human opponents
or computer agents.

The empirical study produced several results. It is im-

portant to note that even in the most simple of experiments,
behavioral patterns emerged. These patterns were useful in
determining when an opponent was playing in a strategi-
cally deficient manner and allowed an obvious exploit to be
made. The plot in figure 3 shows wins and losses for games
played where aggression was held at 0.5 and the tightness of
both players was modified systematically. By observing the
outcomes of this experiment with various constant values of
aggression, it was easy to see how tightness affected the re-
sults. For example, setting player1’s tightness to a very low
level (e.g., 0.03) will usually cause him to lose to player2.
This makes sense because a low tightness corresponds to a
“loose” player that tends to play too many hands (by not
folding when its cards are unfavorable).

We used our model to obtain Monte Carlo estimates for
the probability of winning a heads up game given each
player’s tightness. To obtain these estimates, we discretized
each player’s tightness into 101 partitions from 0 to 1 (inclu-
sive) in increments of .01. For each pair of tightness values,
we generated 100 games. The players are symmetrical, and
there are no ties, so the probability of Player 1 winning is
1 - the probability of Player 2 losing. Exploiting this, we
effectively had 202 games for every pair of tightness values.
The results are shown in figure 3, with the blackness of an
x, y point corresponding to the probability that Player 1 will
lose. Note that, due to symmetry, the probability of win-
ning against an opponent with the same tightness value as a
player is .5.

We used these estimated probabilities to determine the
probability of winning a game for a particular tightness
value against an unknown opponent (assuming a uniform
distribution of opponent tightness values). These probabil-
ities are shown in figure 4. Using this graph, we can see a
strategy with a tightness value has about a .4 probability of
winning against a randomly picked opponent. Note that the
area under this curve should be exactly .5. This curve peaks
for a tightness value of .47. Therefore, the best static strat-
egy (i.e., a strategy that’s not allowed to change its tightness
value) is to set the tightness value to .47. Note that the worst
static strategy is to set the tightness value to 1, which cor-
responds to folding whenever there’s a raise. The only time
this strategy might win is if the opponent also has a very
high tightness.

We also used the data in figure 3 to generate a dynamic
strategy. A dynamic strategy is allowed to view the oppo-
nent’s tightness value, then change its own tightness value
in response. To do this, we first smoothed the data using a
Gaussian, to ameliorate the experimental error. Using this
smoothed surface, for every tightness value of Player 2, we
found the tightness value for Player 1 that resulted in the
highest probability of winning. This graph is shown in fig-
ure 5, where the x axis is Player 2’s tightness value, and
the y axis is Player 1’s response. For example, if Player 2’s
tightness is .2, then Player 1 should adapt by setting his/her
own tightness value to .52. We’ve plotted the line x = y to
show where the Nash equilibria are for this strategy. These
are the points of convergence if there are 2 dynamic agents.
In this case, there is only 1 Nash equilibrium at .46. We sus-
pect that it’s merely coincidental that this is so close to the
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Figure 3: The effect of tightness on probability of winning.
This graph shows Player 1’s probability of winning depend-
ing his own tightness and on Player 2’s tightness. Note both
the (inverted) symmetry in the graph about x = y and the
white area near the top of the plot. This means that Player 1
is likely to win if Player 2 sets his tightness near 1 (so Player
2 is likely to fold), and symmetrically, Player 1 is likely to
lose if he sets his tightness too high. Although not as obvi-
ous, the area at the extreme left of the graph is darker than
the area in the middle. Thus, the optimal strategy is neither
to be completely tight nor completely loose.

optimal static value (.47).
We compared performance of our best static strategy (fix-

ing the tightness value to .47) against the dynamic strategy.
To do this, we ran each 100 times against each of 101 op-
ponents (distributed uniformly from 0 to 1, inclusive). This
made a total of 20,200 games. The dynamic strategy had
a marginal, but statistically significant advantage over the
static strategy: the dynamic strategy won 6,257 (or 61.95%)
of its games while the static strategy won 6,138 (or 60.77%)
of its games. Using a t-test, we calculated that this is well
over 95% significant (t = 1.7138, where the 95% confi-
dence interval is when t ≥ 1.645). Since a randomly cho-
sen static strategy is expected to win half its games (50%),
the static strategy is a 10.77% improvement over random,
and the dynamic strategy is a 11.95% improvement over
random. This means that the dynamic strategy is (11.95%
- 10.77%)/10.77% = 10.96% improvement over the static
strategy.

Conclusion
Our models demonstrate the utility of exploiting an oppo-
nent’s strategic deficiency. Future work using these models
will proceed in three directions. We will develop methods
for autonomously discovering deficiency models using hy-
brid features and composite behavior spaces; these models
may result in unintuitive, yet powerful models. Second, we
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Figure 4: How tightness affects probability of winning
against a randomly selected opponent. If players aren’t al-
lowed to adjust their tightness, the best tightness is .47,
which gives a 61% probability of winning against a oppo-
nent whose tightness is randomly selected (uniformly from
0 to 1).

are interested in using the learned models to discover classes
of opponent’s weaknesses (e.g., temporal changing behav-
ior, intimidation, etc.). Once weakness classes are discov-
ered, we will evaluate our models’ effectiveness against var-
ious weakness classes. Finally, we hope to extend our work
to additional game domains where we can explore classes of
games and transfer of learned models.

Poker remains an important domain for research in artifi-
cial intelligence. The real world applications that can benefit
from this research are very complex and cannot benefit from
overly-simplified games. Since poker is an example of a do-
main that mirrors the complexity of real world problems, it
is the authors belief that beneficial research must come from
full-scale versions.

The complexity of the domain can be partially handled
by methods of abstraction that reduce the spaces to more
tractable sets. Additional benefit is derived from choosing
to model opponents only in terms of their strategic deficien-
cies. This approach offers the benefit of reduced complexity
and managed risk. It is not intended as a replacement for
an action selection mechanism but, instead, a supplemental
source of information. This information is not always avail-
able and is is not always actionable when it is. When the
model can be used, however, it provides enormous earning
potential on hands that would otherwise slip by. Since the
ultimate goal in poker is to win money, we use the model to
help us do so in a focused manner.
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