
Autom Softw Eng (2015) 22:159–197
DOI 10.1007/s10515-014-0157-z

Building high assurance human-centric decision systems

Constance L. Heitmeyer · Marc Pickett · Elizabeth I. Leonard ·
Myla M. Archer · Indrakshi Ray · David W. Aha ·
J. Gregory Trafton

Received: 16 October 2013 / Accepted: 16 June 2014 / Published online: 13 November 2014
© Springer Science+Business Media New York 2014

Abstract Many future decision support systems will be human-centric, i.e., require
substantial human oversight and control. Because these systems often provide critical
services, high assurance is needed that they satisfy their requirements. This paper, the
product of an interdisciplinary research team of experts in formal methods, adaptive
agents, and cognitive science, addresses this problem by proposing a new process
for developing high assurance human-centric decision systems. This process uses AI
(artificial intelligence) methods—i.e., a cognitive model to predict human behavior
and an adaptive agent to assist the human—to improve system performance, and
software engineering methods—i.e., formal modeling and analysis—to obtain high
assurance that the system behaves as intended. The paper describes a new method for
synthesizing a formal system model from Event Sequence Charts, a variant of Message

C. L. Heitmeyer (B) · E. I. Leonard · M. M. Archer · D. W. Aha · J. G. Trafton
Naval Research Laboratory, Washington, DC 20375, USA
e-mail: constance.heitmeyer@nrl.navy.mil

E. I. Leonard
e-mail: elizabeth.leonard@nrl.navy.mil

M. M. Archer
e-mail: myla.archer@nrl.navy.mil

D. W. Aha
e-mail: david.aha@nrl.navy.mil

J. G. Trafton
e-mail: greg.trafton@nrl.navy.mil

M. Pickett
Google, Inc., Mountain View, CA 94043, USA
e-mail: marcpickett1@gmail.com

I. Ray
Colorado State University, Fort Collins, CO 80523, USA
e-mail: iray@cs.colostate.edu

123

160 Autom Softw Eng (2015) 22:159–197

Sequence Charts, and a Mode Diagram, a specification of system modes and mode
transitions. It also presents results of a new pilot study investigating the optimal level
of agent assistance for different users in which the agent design was evaluated using
synthesized user models. Finally, it reviews a cognitive model for predicting human
overload in complex human-centric systems. To illustrate the development process
and our new techniques, we describe a human-centric decision system for controlling
unmanned vehicles.

Keywords High assurance · Formal models · Formal methods · Adaptive agents ·
Cognitive models · Formal model synthesis from scenarios · User model synthesis ·
User scenarios · System and software requirements

1 Introduction

Many future decision systems will be human-centric—i.e., require substantial human
oversight and control. One important and growing class of human-centric decision sys-
tems are those that manage unmanned vehicles. An estimate is that the U.S. military
currently deploys over 7,000 UAVs (Unmanned Air Vehicles) (Bumiller and Shanker
2011). Most of these UAVs, which perform a range of critical tasks including sur-
veillance, reconnaissance, and targeting, are not entirely autonomous but are remotely
controlled by humans. Such systems, which are already having a major impact on mil-
itary applications worldwide, are being used increasingly to extend and complement
human capabilities, rather than to replace humans (DSB 2012). Unmanned vehicles are
also being deployed increasingly in civilian applications such as law enforcement and
public safety. For example, the FBI, U.S. Border Protection Agency, Texas Department
of Safety, and U.S. Forest Service, among others, have equipped UAVs with cameras
and scientific instruments to conduct surveillance and gather information (Sengupta
2013). The rapid rise in civilian use of unmanned vehicles and recent plans to equip
UAVs with nonlethal weapons, e.g., tear gas and pepper spray, have raised serious
privacy and other major concerns (US Senate 2013) and led to calls for greater human
control and oversight of unmanned vehicles.

Developing human-centric decision systems poses two difficult challenges: (1) how
to obtain high assurance that these systems behave as intended, and (2) how to design
systems which perform effectively. While a promising approach to (1) is to apply
formal modeling and analysis, a huge problem is how to obtain the formal system
model: Difficult to obtain in general, formal models of human-centric decision systems
are especially hard to obtain given their complexity. A promising approach to (2)
is to apply AI (artificial intelligence) methods—i.e., a cognitive model to predict
human behavior (e.g., when an operator is overloaded) and an adaptive agent to aid
an overloaded operator with his or her assigned tasks. However, how to design these
systems raises many difficult questions—e.g., which tasks to assign to humans and
which to an agent, when to switch control from a human to an agent and vice versa, and
how and when to notify an operator when a task is in urgent need of attention (DSB
2012).

123

Autom Softw Eng (2015) 22:159–197 161

This article, which extends a paper presented at the Second International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering (Heitmeyer
et al. 2013a), describes new research that addresses these challenges. To illustrate
the complexity of these systems, Sect. 2.1 presents an example of a human-centric
decision system controlling a team of UAVs. To show how high assurance human-
centric decision systems can be developed, Sect. 2.2 introduces a system development
process in which principles from cognitive science and adaptive agents are used to
design the system, scenarios are constructed to specify the required system behavior
and a system model synthesized from the scenarios, and, once the model has been
validated and verified, a system based on the model is implemented. Sections 3–
5 describe the results of our research to support this development process in three
areas—formal methods, cognitive science, and adaptive agents.

Section 3, which presents the first of our two research contributions, addresses
the formal methods challenge by introducing a new method for synthesizing a formal
system model from scenarios. This synthesis method is based on a novel representation
of scenarios called a Moded Scenarios Description (MSD), which contains a Mode
Diagram and a set of Event Sequence Charts (ESCs), variants of Message Sequence
Charts (MSCs) (ITU 1999). To provide a foundation for the method, Sect. 3 also
introduces a formal model of a MSD and two algorithms for model synthesis.

Sections 4 and 5 address the system design challenge by introducing principles
from cognitive science and adaptive agents useful in designing human-centric decision
systems. Section 4, included to illustrate our development process and to provide
context for Sections 3 and 5, briefly reviews a cognitive model for predicting operator
overload (Breslow et al. 2014), and how the model can be used to determine when to
send operator alerts to enhance performance (Gartenberg et al. 2013). After reviewing
our ongoing research on synthesizing user models to evaluate agent designs (Pickett
et al. 2013), Sect. 5 presents our second research contribution, the results of a new
pilot study in which synthesized user models were used to investigate how proactive
an adaptive agent should be (i.e., how quickly it should act) to assist a user. This
study demonstrates that high-performing user models perform better with moderately
proactive agents than with highly proactive agents. In our approach, an adaptive agent
would be tightly integrated with a cognitive model.

2 Human-centric decision system: overview

2.1 Example of a human-centric decision system: RESCHU

Our studies are being conducted in the context of the Research Environment for Super-
visory Control of Heterogeneous Unmanned Vehicles (RESCHU), a MIT-developed
simulator of a decision system in which a single human operator controls a team of
UAVs (Boussemart and Cummings 2008). In RESCHU, operators assign and move
UAVs to specific target areas, reroute UAVs to avoid threats, and order UAVs to engage
targets. The operator can alter the path of a UAV towards its target by manipulating
waypoints. Simultaneously, operators perform other tasks (e.g., visual acquisition, sur-
veillance) in scenarios involving urban coastal or inland settings. RESCHU’s operator

123

162 Autom Softw Eng (2015) 22:159–197

Fig. 1 Operator display of MIT’s RESCHU simulator (Boussemart and Cummings 2008)

interface, illustrated in Fig. 1, has three windows. The Map window displays UAVs,
targets, and threats (hazards). The Status window provides information, such as UAV
damage from threats, estimated time for UAVs to reach targets, etc. The Payload win-
dow displays status information for other mission tasks. As in other human-centric
decision systems, a serious problem in RESCHU is operator overload—the operator
has too many concurrent demands and cannot handle all in a timely manner.

2.2 System development process

A promising approach to achieving high assurance for human-centric decision sys-
tems is Model-Based Development (MBD) (Heitmeyer et al. 2013b), a variant of
Model-Driven Development (MDD) (Selic 2003). In MBD, one or more models of
the required system behavior are built, validated (e.g., via simulation) to capture the
intended behavior, verified to satisfy required properties, and ultimately used to build
the system implementation. Model properties to be verified include completeness (no
missing cases), consistency (no non-determinism), and application properties, such
as safety properties. While the use of MBD in software practice is growing, a major
problem is the lack of good formal requirements models. In many cases, system and
software requirements models do not exist at all. Even when they exist, these models
are usually expressed ambiguously in languages without an explicit semantics and
at a low level of abstraction. Ambiguity makes the models hard to analyze formally
while the low level of abstraction leads to unneeded implementation bias and also
makes the models hard to understand, validate, and change. To address these prob-
lems, researchers have introduced techniques for synthesizing formal models from
scenarios (see, e.g., Whittle and Schumann 2000; Uchitel et al. 2003). Informally,
scenarios describe how the system interacts with humans and the system environment
to provide the required system services. Because many practitioners already use sce-
narios to elicit and define requirements, synthesizing formal models from scenarios is
highly promising.

123

Autom Softw Eng (2015) 22:159–197 163

Fig. 2 Development process for a high assurance human-centric decision system

Figure 2 illustrates a five-step process for developing high assurance human-centric
decision systems, the extension of a process introduced in Bharadwaj and Heitmeyer
(2000). Shown in the figure is an idealization of the actual process, which has more
iteration and feedback and which may not always proceed in a top-down fashion. In
step 1, principles from cognitive science and adaptive agents are used to formulate the
system design. As shown in Fig. 2, in the system, a human operator interacts with a
visual display to perform a required set of tasks. Because the tasks are complex, an
adaptive agent is available to assist an overloaded operator and a cognitive model to
predict operator overload. In step 2, a system prototype is built based on this design.
In step 3, a requirements engineer elicits information about the system requirements
from the prototype, determines the system modes (externally visible abstractions of the
system state), and expresses the requirements in terms of system modes and a set of
scenarios. Informally, the system will behave differently in different modes; e.g., if the
system is in mode A when a new input arrives, it may respond differently than it would
in mode B. In the scenarios, implementation bias (e.g., in RESCHU, how the display
represents an endangered UAV) can be avoided by using appropriate abstractions.
The requirements engineer also formulates and expresses in precise natural language
the required system properties. For RESCHU, an example property is “If endangered
(i.e., too close to a hazard), then a UAV is under operator control or agent control.”
In step 4, the scenarios and modes are automatically synthesized into a formal system
model, and the model is checked for completeness and consistency, and validated
(e.g., via simulation) to capture the intended behavior. Moreover, required system
properties, such as the example property above, are translated into logical formulae,
and the formal model verified to satisfy these properties. Finally, in step 5, the model,
along with information such as the platform characteristics, and the characteristics and
interfaces of I/O devices, is the basis for developing source code, some code generated
automatically from the model using code synthesis techniques such as Leonard and
Heitmeyer (2003), Rothamel et al. (2006).

Sections 3–5 describe new software engineering and AI techniques which support
this development process. To evaluate these new techniques, we built a prototype
system by extending RESCHU with a cognitive model to predict operator overload. In
future work, an agent will be added to the prototype to assist the operator in performing
the assigned tasks. We expect the technique described in Sect. 3 for synthesizing
formal system models from scenarios to support steps 3–5 of our development process:
Code generated from a validated, verified formal system model should provide high

123

164 Autom Softw Eng (2015) 22:159–197

assurance that the system implementation satisfies its requirements. The techniques
for predicting operator overload and for evaluating agents described in Sects. 4 and 5
are expected to lead to high quality designs of human-centric decision systems and
should therefore prove useful in developing the prototype system called for in steps 1
and 2. Moreover, we expect the synthesized user models described in Sect. 5 will also
be useful in step 3, e.g., for identifying assumptions about the operator’s behavior,
and in step 4 as input user data useful for validating and verifying the formal model
synthesized in this step.

3 Synthesis of formal system models from scenarios

3.1 Background: SCR tabular notation, model, and toolset

In 1979–1980, the Software Cost Reduction (SCR) tabular notation was introduced
to specify software requirements precisely and unambiguously (Heninger 1980;
Alspaugh et al. 1992). This tabular notation has two important benefits. First, soft-
ware developers find models expressed in table format easy to understand. Second,
the tabular notation scales; the large requirements models of practical systems can be
concisely represented in tables. In 1996, a formal state machine semantics for models
expressed in the SCR tabular notation was presented (Heitmeyer et al. 1996) which
includes an important construct of SCR, system modes (also called modes). Modes
provide a system-level abstraction for partitioning the system states into equivalence
classes, one class per mode. An important feature of modes is that they are already
explicit in many critical software systems (see, e.g., Alspaugh et al. 1992; Heitmeyer
and Jeffords 2007). Based on the SCR formal semantics and the notion of modes, a
large suite of tools called the SCR toolset has been developed. The toolset includes
a consistency checker for detecting well-formedness errors (e.g., type errors, missing
cases) in the model specification (Heitmeyer et al. 1996); a simulator for symboli-
cally executing the model to validate that it captures the intended behavior (Heitmeyer
et al. 2005); and an invariant generator for automatically generating state invariants
from SCR specifications (Jeffords and Heitmeyer 1998; Leonard et al. 2012). Also
integrated into the toolset are model checkers (Heitmeyer et al. 1998) for finding viola-
tions of desired system properties, such as safety and security properties, and theorem
provers (Archer 2001; Jeffords and Heitmeyer 2003; Heitmeyer et al. 2008) for verify-
ing such properties. Tools have also been developed for automatically generating test
cases (Gargantini and Heitmeyer 1999) and for synthesizing source code from SCR
specifications (Leonard and Heitmeyer 2003; Rothamel et al. 2006).

Although software developers may understand formal models in the tabular format,
they have difficulty creating these and other formal models. However, in our experi-
ence, when practitioners are presented with a model represented by tables, they can
readily understand, modify, and extend the model. The challenge is to produce the
initial model. This section describes a Moded Scenarios Description, our solution to
this problem. A Moded Scenarios Description contains a set of Event Sequence Charts
(ESCs), a Mode Diagram, and a Scenario Constraint. The ESCs look like Message
Sequence Charts (ITU 1999), a popular notation used by many practitioners to specify

123

Autom Softw Eng (2015) 22:159–197 165

system and software requirements. A Mode Diagram uses system modes to provide
a system-level abstraction for combining the ESCs. This section presents an example
which shows how selected system requirements for a hazard avoidance task can be
specified in terms of a Moded Scenarios Description; and introduces a formal seman-
tics for ESCs and Mode Diagrams, a method for transforming a Moded Scenarios
Description into a formal SCR requirements model, and algorithms for computing the
update functions of the model.

3.2 Specifying scenarios using Event Sequence Charts and Mode Diagrams

Inspired by Message Sequence Charts (MSCs) (ITU 1999) and their popularity among
practitioners, we have developed Event Sequence Charts (ESCs), which have a natural
state machine semantics, are easy to change, and are designed to scale better than the
traditional basic and hierarchical MSCs. Each ESC contains a set of entities and a list
of event sequences. The entities include the system and a set of environmental entities,
the latter consisting of monitored entities—entities which the system monitors—and
controlled entities—entities which the system controls. Each monitored entity is asso-
ciated with one or more monitored variables and each controlled entity with one or
more controlled variables. Each event sequence contains a single monitored event, a
change in value of a monitored variable, followed by a set, possibly empty, of changes
in the values of controlled variables. A monitored event may also cause changes in the
values of term variables, auxiliary variables designed to make the ESCs more concise
and more understandable.

Our approach uses ESCs, a Mode Diagram, and a Scenario Constraint to specify
system requirements. A Mode Diagram contains sets of modes and mode transitions.
To specify the relationship between ESCs and a Mode Diagram, our approach uses
numeric labels, positive integers which relate each event sequence in an ESC to the
modes and mode transitions in the Mode Diagram. To illustrate our approach, we
present two ESCs, a Mode Diagram, and a simple Scenario Constraint specifying
(some) required system behavior in a hazard avoidance task. In RESCHU, a UAV’s
path may cross a hazard area. For an example, see the top of Fig. 1, where UAV 4
is dangerously close to a hazard. To avoid the hazard, either the operator or an agent
assisting the operator must modify the UAV’s path.

3.2.1 Two examples of Event Sequence Charts

Although ESCs and MSCs look very similar, they have significant differences. While
MSCs have been used to specify both system requirements and designs, the purpose
of ESCs is to specify system and software requirements only. Unlike MSCs which
often describe the interactions of many system components, each ESC has only a
single system entity and many environmental entities. Further, an event sequence in
an ESC includes not only a single monitored event (change in a monitored entity) but
all effects of the monitored event, each represented as a change to either a controlled
or term variable. Thus a single event in an ESC usually corresponds to a sequence of
two or more messages in a MSC. ESCs and MSCs are also semantically different. In

123

166 Autom Softw Eng (2015) 22:159–197

Fig. 3 The ESC named Op_Control specifies the sequence of events when the operator adds a waypoint
to a UAV’s path so the UAV avoids a hazard

an ESC, an event and its immediate effects occur in a single step. In an MSC, an event
and its effects may occur in several steps.

Figures 3 and 4 contain two examples of ESCs. These ESCs specify the system’s
required behavior in the hazard avoidance task for two different sequences of monitored
events. The scenario Op_Control in Fig. 3 describes the case in which the operator
is responsible for hazard avoidance. It contains five event sequences, each assigned a
numeric label and interpreted as follows:

1. Upon learning that a UAV is unsafe, the system modifies the display to warn the
operator (e.g., by changing the color of the icon which represents the UAV) that
the UAV needs attention.

2. The cognitive model learns, e.g., from eye tracker data, that the operator is fixated
on (paying attention to) the UAV and notifies the system. In response, the system
sets the term variable tFixated_i to True.

3. The system is notified that the UAV is in danger, i.e., the distance between the
UAV’s location and the hazard is at or below a threshold, the constant minD.
Because the operator is fixated on the UAV, the system relies on the operator to
act to protect the UAV.

4. The operator takes action, i.e., instructs the system to add a new waypoint to the
UAV’s path to avoid the hazard. In response, the system updates the display to
show the UAV’s new path once the waypoint is added.

5. The system is notified that the UAV is safe. In response, it updates the display to
show that the UAV is no longer in danger.

The scenario Agent_Control in Fig. 4 specifies the system requirements when the
operator is busy with other tasks, and the agent must protect the UAV from a hazard.
The ESC specifying this scenario is interpreted as follows:

123

Autom Softw Eng (2015) 22:159–197 167

Fig. 4 The ESC Agent_Control specifies the sequence of events when the agent adds a waypoint to a
UAV’s path to avoid a hazard

1. Same behavior as in the Op_Control scenario.
6. The cognitive model informs the system that the operator is not fixated on the

endangered UAV, causing the system to set tFixated_i to False.
7. As in the first scenario, the system is notified when the distance between the UAV

and a hazard is at or below a distance of minD. Because the operator is not fixated
on the UAV, the agent must act to protect the UAV by adding a new waypoint to
its path. The system then updates the display to show the UAV’s new path.

8. Same behavior as event sequence 5 in the Op_Control scenario.

3.2.2 Example of a Mode Diagram

The Mode Diagram in Fig. 5 describes a mode class called M_i; four modes, each
a possible value of M_i; and five mode transitions. This diagram, together with the
ESCs in Figs. 3 and 4 and the Scenario Constraint C (see Sect. 3.2.3 below), specifies
required system behavior in the hazard avoidance task. As shown in Fig. 5, in a Mode
Diagram, both transitions and modes have numeric labels. Each transition has exactly
one numeric label. This label identifies the event sequence containing the monitored
event which triggered the transition. For example, in Fig. 5, the transition labeled 1 from
mode OK to mode Haz_on_Path is triggered by the unconditioned monitored event
“mUAV_i = unsafe” in event sequence 1. This event sequence appears in the ESCs
in both Figs. 3 and 4. In Fig. 5, the transition labeled 7 from mode Haz_on_Path to
mode Agent_incontrol is triggered by the conditioned monitored event in event
sequence 7 in Fig. 4, namely, “mdist2haz≤minDWHENtFixated_i=False.”
In a Mode Diagram, each mode has an associated set, perhaps empty, of numeric labels.
These numbers, separated by commas, indicate that one or more monitored events may
occur in the mode but none triggers a mode transition. For example, in Fig. 5, the “2,
6” label on the mode Haz_on_Path refers to the corresponding monitored events
in event sequences 2 and 6 in Figs. 3 and 4, respectively.

123

168 Autom Softw Eng (2015) 22:159–197

Fig. 5 Mode diagram showing the four modes and mode transitions of mode class Mi , and the numeric
labels of monitored events that trigger transitions or can occur in a mode

3.2.3 Scenario Constraint: examples

A Scenario Constraint can define constants, for example, the value of minD in the
hazard avoidance task. It can also restrict or add to the required system behavior
specified in the ESCs and the Mode Diagram. An example of a Scenario Constraint
that restricts the system behavior is

mOpFix_i=True⇔[tFixated_i=True]AND [INIT(mOpFix_i=False)],

whereINIT(_ = _) is a predicate that constrains the initial value of a variable spec-
ified in one or more of the ESCs. This constraint states that term variabletFixated_i
always has the same value as monitored variable mOpFix_i and that the initial value
of mOpFix_i is False. An example of a Scenario Constraint which adds required
system behavior is

M_i = Op_incontrolANDmOpFix_i = TrueANDmOpFix_i′ = False

→ M_i′ = Agent_incontrol,

where an unprimed variable represents a variable’s current value and a primed variable
its new value when a monitored event occurs. This constraint states that if the oper-
ator stops paying attention when the UAV is close to a hazard, the system switches
responsibility for moving the UAV to the agent. This example shows how a constraint
may change the behavior specified in the ESCs and the Mode Diagram.

3.3 Formal model of a Moded Scenarios Description

This section formally defines the notions of entities, types, scenario state variables,
events, and conditions. These are used to define a set of ESCs, a Mode Diagram,
scenario states, and a Scenario Constraint. The ESCs, Mode Diagram, and Scenario
Constraint are used in turn to define a Moded Scenarios Description. In addition, a
set of numeric labels are defined that link the event sequences in the ESCs with the
modes and mode transitions in the Mode Diagram. Table 1 defines the notation used
in this section and Sect. 3.4.

123

Autom Softw Eng (2015) 22:159–197 169

Table 1 Notation used in this section

Symbol Usage

B The Booleans
Ec A set of controlled events
Et A set of term events
F A map of variables to associated entities
H, K A set of numeric labels
S A set of states
V A map from variables to values
Xm A monitored event expression
Y An event sequence chart
Z The set of integers
Z+ The set of positive integers
a A scenario state variable
c A controlled event
d A condition
h, k A numeric label
m A monitored event
mc A mode class;

a special variable whose set of possible values is a set of modes
op A binary relational operator such as = or ≤
r A scenario state variable
s A state; equivalently, a map from state variables to values
ŝ A scenario state;

equivalently, a map from scenario state variables and mode class to values
t A term event
EN A set of entities
MD A Mode Diagram
RFsc The set of scenario state variables
RF The set of state variables
RV A set of variable/value pairs
TS A union of type sets;

possible values of scenario state variables
TY The map of variables to their associated type
VS TS ∪ M; Possible values of state variables
C A Scenario Constraint
C I A set of initial value constraints of the form INIT(r = v)

M A set of modes
MT A set of mode transitions
ML A set of mode/numeric-label-set pairs;

in effect, A map from modes to sets of numeric labels
T A set of values; equivalently, a type set, or a type
Y A set of Event Sequence Charts
W A Moded Scenarios Description
Θ The initial state predicate of a state machine
Σ A system; a state machine
Υ An update function
μ A mode
μ0 The initial mode
ρ The transition relation of a state machine

Unless explicitly indicated otherwise, a subscript attached to a symbol associates the object it denotes with
an object denoted by the subscript symbol

123

170 Autom Softw Eng (2015) 22:159–197

3.3.1 Event Sequence Charts (ESCs)

We assume the existence of the following sets.

– EN is a set of entities, consisting of a single system and a set of environmental
entities. EN partitions into the set ENM of monitored entities, the set ENC of
controlled entities, and singleton set ENS containing the system.

– TS is a union of types T , where each type is a nonempty set of values. The set of
positive integers Z+ = {1, 2, . . .} and the set B = {True,False} of Boolean
truth values are examples of types.

– RFsc is a set of scenario state variables, partitioned into set RFM of monitored
variables, set RFT of terms, and set RFC of controlled variables. A function TYsc :
RFsc → 2TS maps each variable r ∈ RFsc to its set of type correct values TYsc(r) ⊂
TS. Another function FEN : RFM ∪ RFC → EN maps each monitored or controlled
variable r to an associated entity x in EN. Thus if FEN(r) is in ENM , then r is a
monitored variable; if FEN(r) is in ENC , then r is a controlled variable.

Example: In Figs. 3 and 4, the set of entities is EN = {UAV_i, CogModel,
OpCmd, Dist2Haz_i, System/Agent, Display, UAVtraj_i}, of mon-
itored entities is EN_M = {UAV_i, Dist2Haz_i, OpCmd, CogModel},
and of controlled entities is ENC = {Display, UAVtraj_i}. Set ENS =
{System/Agent} denotes the system. The set RFsc of scenario state vari-
ables is {mUAV_i,mOpFix_i,mdist2haz_i, mNewWP_i, tFixated_i,
dNewWP_i, dUAV_i, cNewWP_i}, the set RFM of monitored variables
equals {mUAV_i, mOpFix_i, mNewWP_i, mdist2haz_i}, the set RFT

of terms is {tFixated_i}, and the set RFC of controlled variables is
{dNewWP_i, cNewWP_i, dUAV_i}. Sample type sets are TYsc(dUAV_i) =
{safe,unsafe} and TYsc(mOpFix_i) = {True,False}.

Events and Conditions: Events (and simple conditions) are triples of the form (r, op, v)

where r is a scenario state variable in RFsc, op is a relational operator (=, >, ...), and
v is a value in TS. A monitored event m = (r, op, v) is an event in which r is in RFM ;
a term event t = (r, op, v) is an event in which r is in RFT , and a controlled event
c = (r, op, v) is an event in which r is in RFC . In controlled and term events, op
always has the value “=”.

Example: In event sequence 1 of Fig. 3, the triple m = (r, op, v), where r =
mUAV_i, op has value “=”, and v= unsafe, represents the monitored event
“mUAV_i is unsafe.” In the WHEN clause of event sequence 3 in Fig. 3, the
triple d = (r, op, v), where r=tFixated_i, op has value “=”, and v=True,
represents the simple condition “tFixated_i=True.”

A condition d is either True, a simple condition, or an expression containing two
or more simple conditions joined by the logical operators ∧ and ∨ in the standard way.
An unconditioned event is an event with no associated condition (besides True). A
conditioned event is an event associated with a condition other than True.

123

Autom Softw Eng (2015) 22:159–197 171

Example: In Fig. 3, the monitored event “mUAV_i = unsafe” in event
sequence 1 is an unconditioned monitored event, while the monitored event
“mdist2haz_i ≤ minD WHEN tFixated_i = True” in event sequence 3
is a conditioned monitored event.

Event Sequence Charts and Chart Labels: Next, we define an Event Sequence Chart
(ESC) Y and an associated set KY of numeric labels called chart labels.

– An ESC is a sequence Y of event sequences < y1, y2, . . . , yn >. Each event
sequence yi in Y is a triple (i, Xm

i , Ec
i), where i in Z+ is the numeric label of

the sequence; Xm
i is a monitored event expression; and Ec

i is a set of controlled
events. The monitored event expression Xm

i is represented as a triple (mi , di , Et
i),

where mi is a monitored event, di is a condition, and Et
i is a set of term events

triggered by mi when di holds. The sets Et
i and Ec

i may be empty. In two related
event sequence charts Y1 and Y2, yi in Y1 and y j in Y2, i = j , implies Xm

i = Xm
j

and Ec
i = Ec

j . That is, if event sequences in related ESCs have the same numeric
label, their monitored event expressions and sets of controlled events are identical.

– Associated with each ESC Y is a set KY of chart labels. The set KY ⊂ Z+ is
defined by KY = { i | yi = (i, Xm

i , Ec
i) ∈ Y }.

Example: In Fig. 3, event sequence 1 is denoted as y1 = {1, Xm
1 , Ec

1},
where Xm

1 = (m1, d1, Et
1), m1 = (mUAV_i=unsafe), d1 = True,

Et
1 = ∅, and Ec

1 = {(dUAV_i,=,unsafe)}. Similarly, in the event sequences
y2 = {2, Xm

2 , Ec
2} and y3 = {3, Xm

3 , Ec
3}, Xm

2 = (m2, d2, Et
2), where

m2 = (mOpFix_i,=,True), d2 =True, Et
2 = {(tFixated_i,=,True)},

and Ec
2 = ∅; and Xm

3 = (m3, d3, Et
3), where m3 = (mdist2haz_i, ≤,

minD), d3 = {(tFixated_i,=,True)}, and Et
3 = Ec

3 = ∅. For the ESC in
Fig. 4, the set of chart labels is {1, 6, 7, 8}.

3.3.2 Mode Diagram

A Mode Diagram specifies a simple state machine called a “mode machine”. It defines
a set of modes, an initial mode, and a set of mode transitions. Each transition has exactly
one numeric label. Each mode has an associated set, perhaps empty, of numeric labels,
each corresponding to a numeric label in an ESC of a monitored event that may occur
in that mode. A Mode Diagram MD and its associated set of numeric labels KM D are
formally defined next.

– A Mode Diagram is a 5-tuple MD = (M, mc, μ0,MT ,ML), where M is a set
of modes; mc is the mode class, a variable with type set M that names the current
mode; μ0 ∈ M is the initial mode; MT is a set of mode transitions, each transition
labeled with a unique numeric label; and ML is a mapping which associates each
mode with a set of numeric labels. The set MT of mode transitions is represented
as a set of triples (μi , k, μ j), where μi and μ j , i �= j , are modes in M, and k is the
numeric label of the transition. The mapping ML is represented as a set of ordered
pairs (μ j , Hj), where, for all modes μ j in M, Hj is the set, possibly empty, of
numeric labels associated with mode μ j . The set MT contains information needed

123

172 Autom Softw Eng (2015) 22:159–197

to define a mode transition function. The mapping ML contains information needed
to define controlled variables as functions of modes.

– Associated with a Mode Diagram MD = (M, mc, μ0,MT ,ML) is a set of numeric
labels called diagram labels KM D , where KM D ⊂ Z+ is the union KM D = KT ∪
KM of set KT of transition labels and set KM of mode labels. Set KT is defined
by KT = {k | (μi , k, μ j) ∈ MT }. Set KM is defined by KM = {h | (μ, H) ∈
ML , h ∈ H}. The sets of transition labels and mode labels cannot overlap; i.e.,
KT ∩ KM = ∅.

Example: In Fig. 5, the set M of modes is {OK, Haz_on_Path, Op_
incontrol, Agent_incontrol}, the current mode in mode class mc is
M_i, and the initial mode μ0 isOK. The set MT of mode transitions contains five
triples, one for each transition. The transition from OK to Haz_on_Path is rep-
resented by the triple (OK, 1,Haz_on_Path), where 1 is the transition label. The
set of mode-label pairs defining the mapping ML is {(OK, ∅), (Haz_on_Path,
{2, 6}), (Op_incontrol, {4}), (Agent_incontrol, ∅)}. The set of tran-
sition labels is KT = {1, 3, 5, 7, 8}, of mode labels is KM = {2, 4, 6}, and of
diagram labels is KM D = {1, 2, . . . , 8}. As required, KT ∩ KM = ∅.

Scenario State: Suppose Y = {Y1, Y2, . . . , Ym} is a set of ESCs and MD is a Mode
Diagram MD = (M, mc, μ0,MT ,ML). A scenario state ŝ is a function ŝ : RFsc ∪
{mc} → TS ∪ M that maps each scenario state variable in RFsc to a value in its type
set T ⊂ TS and the single mode class mc to a mode in M. More precisely, if r is a
variable, for all r ∈ RFsc : ŝ(r) ∈ TYsc(r), and for r = mc : ŝ(r) ∈ M. TYsc(r) = T ,
where T ⊂ TS is the subset of TS whose members are type-correct values for r . Thus
a scenario state is uniquely determined by an assignment of type-correct values to
every variable r ∈ RFsc ∪ {mc}.

3.3.3 Scenario Constraint

A Scenario Constraint C is a conjunction of one-state and two-state properties,
defined, respectively, by predicates on single scenario states and on pairs of scenario
states (Heitmeyer et al. 1998). Because each scenario state is represented as a mapping
from a set of variables—the scenario state variables and the mode class—to values,
useful predicates are typically defined by formulas over the variables of one or two
scenario states.1 A Scenario Constraint C is acceptable if it is satisfiable. We currently
restrict conjuncts in C which use the INIT predicate to the form INIT(x = v), where
x is a scenario state variable. Because C must be satisfiable, for a given x , there can
be at most one value v for which INIT(x = v) is a conjunct of C.

1 An example of a predicate that may be impossible to capture in a formula is the reachability predicate
where there are infinitely many possible scenario states.

123

Autom Softw Eng (2015) 22:159–197 173

3.3.4 Moded Scenarios Description

A Moded Scenarios Description W is a a triple W = (Y, MD, C), where Y is a
set of ESCs, MD is a Mode Diagram, and C is a Scenario Constraint. We define
the set KY of ESC labels of Y as the union of the sets of chart labels associated
with the event sequence charts in Y , that is, KY = ∪Y∈Y KY . If KM D is the set
of diagram labels associated with the Mode Diagram MD, then we require KY =
KM D , that is, each numeric label associated with an event sequence in an ESC has a
corresponding numeric label associated with a mode or mode transition in MD, and
vice versa.

Example: In Figs. 3 and 4, the set of ESC labels is KY = {1, 2, 3, 4, 5} ∪
{1, 6, 7, 8} = {1, 2, . . . , 8}. In Figs. 3, 4, and 5, KY = KM D = {1, 2, . . . , 8} as
required.

3.4 Synthesizing a formal model from a Moded Scenarios Description

The objective is to transform a Moded Scenarios Description W , where W is the
triple (Y, MD, C), and Y is a set of ESCs, MD is a Mode Diagram, and C is a Scenario
Constraint, into a formal state machine model. The state machine model is represented
as a system Σ = (S,Θ, ρ), where S is a set of states, Θ is an initial state predicate,
and ρ is a transform function that maps the current state and a monitored event to a
new state. Our method has five steps:

1. Construct the sets of state variables and values: Using information in the ESCs
and the Mode Diagram, construct the new set RF of state variables and the new
set VS of values. Based on these sets, define a new function TY which maps each
state variable to its set of possible values. The sets RF and VS and the function
TY provide the basis for constructing the system state, conditions, events, and the
set S of states in system Σ using the definitions in Heitmeyer et al. (1996).

2. Construct the initial state predicate: Based on the definition of the initial mode
in the Mode Diagram and information about the initial state in the Scenario Con-
straint C, define Θ , the initial state predicate.

3. Construct the system transform: Based on information in the Mode Diagram MD
and the ESCs, construct the transform function ρ. The function ρ is computed
using a set of update functions which specify how the values of the dependent
variables—the mode class, the controlled variables, and the term variables—
change in response to a monitored event.

4. Simplify and extend the model: Based on the Scenario Constraint C, modify the
update functions.

5. Analyze and validate the model: Apply analysis techniques and tools to detect
defects in the specification of the model, such as syntax errors and non-
determinism. Once such defects have been removed, other tools can be applied,
such as simulators and verifiers to further improve the quality of the model.

123

174 Autom Softw Eng (2015) 22:159–197

3.4.1 Construct the sets of state variables and values

From the ESCs Y and the Mode Diagram MD, we construct the following sets.

– VS = TS ∪ M is the set of values. VS is the union of the set TS of values defined
in the ESCs and the set M of modes defined in the Mode Diagram MD.

– RF = RFsc ∪{mc} is the set of state variables. Thus RF is the union of the set RFsc of
scenario state variables—the monitored, controlled, and term variables—defined in
the ESCs in Y and the singleton set containing the mode class mc. A new function
TY : RF → 2VS extends the function TYsc. This function TY maps each variable
in RF to its set of type correct values. If the state variable r is a mode class mc, then
TY maps r to the set of modes M.

Example: In Figs. 3, 4, and 5, TY(dUAV_i) = {safe, unsafe}, and TY(M_i)
= {OK, Haz_on_Path, Op_incontrol, Agent_incontrol}.

Using sets RF and VS and function TY, we define the system state, conditions, events,
and the system Σ based on definitions in Heitmeyer et al. (1996).

System State: A system state s is a function mapping each state variable r in RF to a
value in its type set. More precisely, for all r ∈ RF : s(r) ∈ TY(r), where TY(r) = T
is the subset of VS whose members are type-correct values for r .

Conditions: A condition is a single-state predicate, i.e., a function with range type
Boolean. A simple condition is true, f alse, or of the form τ1 � τ2, where � is
a relational operator, and τ1 and τ2 are any well-formed expressions composed of
constants, state variables, and single-state functions in the standard way.

Events: Denoted by “@T”, events are two-state predicates describing a change in
value of at least one variable. A monitored event, denoted @T(r = v), describes the
change in monitored variable r in RFM to value v in TY(r). A basic event is denoted
@T(c), where c is a condition. A simple conditioned event has the form @T(c) WHEN
d, where @T(c) is a basic event and d is a simple condition or a conjunction of simple
conditions. It is defined by

@T(c) WHEN d
def= ¬c ∧ c′ ∧ d,

where the unprimed version of c denotes c in the old state, the primed version denotes
c in the new state, and the condition d is evaluated in the old state.

System: A system Σ is a triple Σ = (S,Θ, ρ), where S is a set of states, Θ ⊆ S is
the set of initial states, and ρ ⊂ S × S is a set of state transitions.

3.4.2 Construct the initial state predicate

Suppose Mode Diagram MD is defined by MD = (M, mc, μ0,MT ,ML) and
the Scenario Constraint C by C = c1 ∧ c2 ∧ · · · ∧ cm , where each ci is a one-

123

Autom Softw Eng (2015) 22:159–197 175

Algorithm 1: Update Function for a Mode Class
INPUT: Moded Scenarios Description W = (Y, MD = (M, mc, μ0, MT ,ML), C)

OUTPUT: Mode Transition Function Υmc
PRECONDITION: (KY = KM D = (KT ∪ KM)) ∧ (KT ∩ KM = ∅)

PRECONDITION: ∀Yi , Y j ∈ Y : ((yi = (i, Xm
i , Ec

i) ∈ Yi) ∧ (y j = (j, Xm
j , Ec

j) ∈ Y j) ∧ (i =
j)) �⇒ ((Xm

i = Xm
j) ∧ (Ec

i = Ec
j))

Υmc = {} ;1
foreach (μi , k, μ j) ∈ MT do2

foreach Y ∈ Y do3
if (k, Xm

k = (mk , dk , Et
k), Ec

k) ∈ Y then4
Υmc = Υmc ∪ {(μi , mk , dk , μ j)};5

state or two-state predicate. Suppose further that Σ = (S,Θ, ρ). Let C I =
{ci |ci is a conjunct in C, ci = INIT(r = v), r ∈ RF, v ∈ VS} be the set of ini-
tial value constraints in C, and let RVI = {(r, v)|INIT(r = v) ∈ C I }. If s ∈ S is a
system state, then Θ(s) is defined by

Θ(s) = True ⇔ ∀r ∈ RF : [r = mc ∧ s(r) = μ0] ∨ [(r, s(r)) ∈ RVI] ∨
[r �= mc ∧ � ∃ v : (r, v) ∈ RVI]

Thus Θ constrains an initial state s to be a state in which the mode class mc has value
μ0, and whenever there is a conjunct of the form INIT(r = v) in C, the value s(r) of
r in state s is v. Any variable other than mc whose initial value is not constrained by
C may have any initial value.

3.4.3 Construct the transform function

The transform function ρ is defined as the composition of a set of update functions.
There is an update function Υr for each dependent (i.e., non-monitored) variable
r ∈ RF specifying how r ’s value changes from the current state s to the new state s′.
To make the definition of the function total, we require that, for all variables r , if r ′
is not explicitly assigned a value in the new state, then r ′ = r , i.e., in the new state,
r ’s value is unchanged. The update function Υr can be represented in the following
form:

r ′ =

⎧
⎪⎪⎨

⎪⎪⎩

v1 if E1
...

vn if En

r otherwise

(∗)

where each Ei is an expression defined on the variables in states s and s′. We
can assume the vi are distinct because if vi = v j for i �= j then we could
replace the two cases “vi if Ei ” and “v j if E j ” by the single case “vi if Ei ∨
E j ”.

123

176 Autom Softw Eng (2015) 22:159–197

This section presents two algorithms, Algorithm 1 and Algorithm 2, for generat-
ing the update functions for mode classes, terms, and controlled variables from the
information in a Moded Scenarios Description.

Update functions for mode classes: Algorithm 1 computes the update function Υmc for
mode class mc using information in the Moded Scenarios Description W , where W =
(Y, MD, C) and MD = (M, mc, μ0,MT ,ML). As preconditions, the algorithm
requires (1) the set KY of chart labels for the set Y of ESCs equals the set KM D

of diagram labels for Mode Diagram MD; (2) set KMD partitions into KT , the set
of transition labels, and KM , the set of mode labels; and (3) if two ESCs in Y have
event sequences with the same chart label, the event sequences are identical.2 The
algorithm produces a set of 4-tuples (μi , mk, dk, μ j), where μi and μ j are modes,
mk is a monitored event, and dk is a condition. The interpretation of the 4-tuple is that
if the event mk occurs when the system is in mode μi and condition dk is true, then
the new mode is μ j , i.e., mc′ = μ j . To begin, the algorithm initializes Υmc (line 1).
For each mode transition (line 2), the algorithm checks each event sequence in each
ESC (line 3) for a chart label that matches the transition label k (line 4). If it finds a
matching label, the algorithm adds to Υmc the transition from mode μi to mode μ j

conditioned on the event mk occurring when dk holds (line 5).
Because event sequences in related ESCs with the same numeric label are required to

have identical monitored, controlled, and term events, Algorithm 1 can be implemented
more efficiently: The for loop on lines 3–5 can exit once an event sequence with
diagram label k is found; not all event sequences with transition label k in all Y ∈ Y
must be found.

Example: Applying Algorithm 1 to the Mode Diagram for mode class M_i and
the ESCs in Figs. 3, 4, and 5 generates the following five 4-tuples in set ΥM_i:

ΥM_i = {(OK, (mUAV_i,=,unsafe),True,Haz_on_Path),

(Op_incontrol, (mUAV_i,=,safe),True,OK),

(Haz_on_Path, (mdist2haz_i,≤,minD), (tFixated_i,=,True),

Op_incontrol),

(Haz_on_Path, (mdist2haz_i,≤,minD), (tFixated_i,=,False),

Agent_incontrol),

(Agent_incontrol, (mUAV_i,=,safe),True,OK)}.

From the set ΥM_i of 4-tuples, the update function for M_i′ can be computed and
expressed in the form of (∗) as shown below, or equivalently in a special tabular
format called in SCR a mode transition table (Heitmeyer et al. 1996). Table 2 contains
a mode transition table, a two-state function specifying how the system mode M_i
changes as a function of the current mode and a new monitored event.

2 These preconditions ensure that W is a well-formed Moded Scenarios Description.

123

Autom Softw Eng (2015) 22:159–197 177

Algorithm 2: Update Function for Terms and Controlled Variables
INPUT: Moded Scenarios Description W = (Y, MD = (M, mc, μ0, MT ,ML), C), Controlled

Variables RFC , Term Variables RFT
OUTPUT: Set of Update Functions {Υa |a ∈ RFC ∪ RFT }
PRECONDITION: (KY = KM D = (KT ∪ KM)) ∧ (KT ∩ KM = ∅)

PRECONDITION: ∀Yi , Y j ∈ Y : ((yi = (i, Xm
i , Ec

i) ∈ Yi) ∧ (y j = (j, Xm
j , Ec

j) ∈ Y j) ∧ (i =
j)) �⇒ ((Xm

i = Xm
j) ∧ (Ec

i = Ec
j))

foreach a ∈ RFC ∪ RFT do1
Υa = {};2

foreach (μi , k, μ j) ∈ MT do3
foreach Y ∈ Y do4

if (k, Xm
k = (mk , dk , Et

k), Ec
k) ∈ Y then5

foreach (r, op, v) ∈ Ec
k do6

Υr = Υr ∪ {(mk , μi , dk , v)};7

foreach (r, op, v) ∈ Et
k do8

Υr = Υr ∪ {(mk , μi , dk , v)};9

foreach (μi , H) ∈ ML do10
foreach k ∈ H do11

foreach Y ∈ Y do12
if (k, Xm

k = (mk , dk , Et
k), Ec

k) ∈ Y then13
foreach (r, op, v) ∈ Ec

k do14
Υr = Υr ∪ {(mk , μi , dk , v)};15

foreach (r, op, v) ∈ Et
k do16

Υr = Υr ∪ {(mk , μi , dk , v)};17

M_i′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Haz_on_Path if M_i = OK ∧ @T(mUAV_i = unsafe)

Op_incontrol if M_i = Haz_on_Path ∧ @T(mdist2haz_i
≤ minD) ∧ tFixated_i = True

Agent_incontrol if M_i = Haz_on_Path ∧ @T(mdist2haz_i
≤ minD) ∧ tFixated_i = False

OK if M_i ∈ {Op_incontrol,Agent_incontrol}
∧@T(mUAV_i = safe)

Update functions for terms and controlled variables: Algorithm 2 generates update
functions for the term variables and controlled variables. Its inputs are the Moded
Scenarios Description W = (Y, MD, C), and the sets of controlled variables RFC

and term variables RFT . The preconditions are the same as those for Algorithm 1. For
each variable r in RFC ∪RFT , the algorithm produces a set of 4-tuples (mk, μk, dk, v),
each representing the assignment r = v when event mk occurs and (mc = μk) ∧ dk

holds. To begin, the algorithm initializes the Υa (lines 1–2). For each mode transition
(μi , k, μ j), it then checks each ESC Y ∈ Y and if the event sequence indexed by k
occurs in Y (line 5), then for each controlled event (r, op, v) ∈ Ec

k and each term event
(r, op, v) ∈ Et

k , it adds to r ’s update function an assignment r = v conditioned on

123

178 Autom Softw Eng (2015) 22:159–197

Table 2 Mode transition table defining the mode class M_i

Old Mode M i Event New Mode M i′
OK @T(mUAV i = unsafe) Haz on Path
Haz on Path
Haz on Path

@T(mdist2haz i ≤ minD) WHEN tFixated i = True Op incontrol
@T(mdist2haz i ≤ minD) WHEN tFixated i = False Agent incontrol

Op incontrol,
@T(mUAV i = safe)

OK
Agent incontrol

Table 3 Event table for tFixated_i

Mode M i Event Event
Haz on Path @T(mOpFix i = True) @T(mOpFix i = False)
tFixated i′= True False

Table 4 Event table for dUAV_i

Mode M i Event Event
OK @T(mUAV i= unsafe) Never
Op incontrol, Agent incontrol Never @T(mUAV i= safe)
dUAV i′ = unsafe safe

monitored event mk and condition (mc = μi) ∧ dk (lines 7 and 9). For each mode/
label-set pair (μi , H) ∈ ML , the algorithm checks that each k in H is in some
ESC Y ∈ Y . If so, for each controlled event (r, op, v) ∈ Ec

k and each term event
(r, op, v) ∈ Et

k , it adds to r ’s update function an assignment r = v conditioned on
monitored event mk and condition (mc = μi)∧dk (lines 15 and 17). Like Algorithm 1,
the for loops on lines 4–9 and 12–17 can be exited once an event sequence labeled
k is found.

Example: Applying Algorithm 2 to the ESCs and Mode Diagram in Figs. 3, 4,
and 5 generates four sets of 4-tuples, one for the term tFixated_i and one
each for the controlled variables dUAV_i, dNewWP_i, and cNewWP_i:

– ΥtFixated_i = {((mOpFix_i,=,true),Haz_on_Path,True,True),
((mOpFix_i,=,false),Haz_on_Path,True,False)}

– ΥdUAV_i = {((mUAV_i,=,unsafe),OK,True, unsafe), ((mUAV_i,=,

safe), Op_incontrol,True,safe), ((mUAV_i,=,safe),
Agent_incontrol,True,safe)}

– ΥdNewWp_i = {((mNewWp_i,=,x),Op_incontrol, True,x),

((mdist2haz_i,≤,minD), Haz_on_Path, (tFixated_i,=,

False),x)}
– ΥcNewWp_i = {((mNewWp_i,=,x),Op_incontrol, True, x),

((mdist2haz_i,≤,minD), Haz_on_Path, (tFixated_i,=,

False),x)}
The update functions generated by Algorithm 2 for the four dependent variables

are presented below. Tables 3, 4, 5, and 6 represent these functions in an alternative
tabular format called an SCR event table (Heitmeyer et al. 1996).

123

Autom Softw Eng (2015) 22:159–197 179

Table 5 Event table for dNewWp_i

Mode M i Event
Op inControl @T(mNewWp i = x)
Haz on Path @T(mdist2haz i ≤ minD) WHEN tFixated i = False
dNewWp i′ = x

Table 6 Event table for cNewWp_i

Mode M i Event
Op inControl @T(mNewWp i = x)
Haz on Path @T(mdist2haz i ≤ minD) WHEN tFixated i = False
cNewWp i′ = x

tFixated_i′

=
⎧
⎨

⎩

True if @T(mOpFix_i = True) ∧ M_i = Haz_on_Path
False if @T(mOpFix_i = False) ∧ M_i = Haz_on_Path
tFixated_i otherwise

dUAV_i′

=

⎧
⎪⎪⎨

⎪⎪⎩

unsafe if @T(mUAV_i = unsafe) ∧ M_i = OK
safe if @T(mUAV_i = safe)

∧ M_i ∈ {Op_incontrol,Agent_incontrol}
dUAV_i otherwise

dNewWp_i′

=

⎧
⎪⎪⎨

⎪⎪⎩

x if (@T(mNewWp_i = x) ∧ M_i = Op_incontrol)∨
(@T(mdist2haz_i ≤ minD) ∧ M_i = Haz_on_Path
∧ tFixated_i = False)

dNewWp_i otherwise

cNewWp_i′

=

⎧
⎪⎪⎨

⎪⎪⎩

x if (@T(mNewWp_i = x) ∧ M_i = Op_incontrol)∨
(@T(mdist2haz_i ≤ minD) ∧ M_i = Haz_on_Path
∧ tFixated_i = False)

cNewWp_i otherwise

To describe the semantics of SCR tables, we consider Table 4, a compact represen-
tation of the update function ΥdUAV_i for the controlled variable dUAV_i. The table’s
last row gives the possible value assignments for dUAV_i, with one column for each
possible value. In the table’s other rows, the leftmost column contains a value for the
mode variable M_i and the remaining columns contain events. The table defines a set
of updates to variable dUAV_i as follows. For each row j and column k if M_i has the
value in row j and the event in cell (j, k) occurs, then variable dUAV_i is assigned
the value in column k of the table’s last row. The entry Never in a cell (j, k) indicates
that no event can occur when M_i has the value in row j which would assign dUAV_i
the value in column k of the last row of the table.

123

180 Autom Softw Eng (2015) 22:159–197

Table 7 Mode transition table for M_i updated by the Scenario Constraint (see last row)

Old Mode M i Event New Mode M i′
OK @T(mUAV i = unsafe) Haz on Path
Haz on Path Op incontrol
Haz on Path

@T(mdist2haz i ≤ minD) WHEN tFixated i = True
@T(mdist2haz i ≤ minD) WHEN tFixated i = False Agent incontrol

Op incontrol, @T(mUAV i = safe) OK
Agent incontrol
Op incontrol @T(mOpFix i = False) Agent incontrol

Table 8 Condition table for tFixated_i

Condition Condition
mOpFix i = True mOpFix i = False

tFixated i = True False

3.4.4 Simplify and extend the model

As stated in Sect. 3.2.3, a Scenario Constraint C either restricts or adds to the required
system behavior. Conjuncts in C of the formINIT(r = v) restrict the system behavior.
For example, if INIT(mOpFix_i = False) appears in a conjunct in C, then the
initial state predicate Θ contains (mOpFix_i = False). Thus initially the operator
in the hazard avoidance task is not fixated on UAV_i.

Consider next the example of a Scenario Constraint from Sect. 3.2.3:

M_i = Op_incontrolANDmOpFix_i = TrueANDmOpFix_i′ = False

→ M_i′ = Agent_incontrol,

This constraint adds new required system behavior to the hazard avoidance task speci-
fied in Figs. 3, 4, and 5: If a UAV is in danger and the operator becomes distracted, the
system passes control to the agent. Clearly, a Scenario Constraint is a more efficient
way to add this new behavior than changing the ESCs. While adding a transition to the
Mode Diagram (from Op_incontrol to Agent_incontrol) is easy, modifying
the ESCs to capture new behavior is problematic because ESCs, like MSCs, are natu-
rally sequential. Moreover, adding a new ESC would repeat most system behavior in
Figs. 3 and 4 but add a new event sequence between 3 and 8, call it 9, whereby the agent,
notified by the system (still in 9) that the operator is distracted, moves the waypoint
and updates the display. In contrast, extending a table to reflect new behavior is trivial.
We simply add a new row to Table 2 specifying a transition from Op_incontrol to
Agent_incontrol when monitored event mOpFix_i ′ = False occurs. The last
row of Table 7 illustrates this change.

Sometimes, the system behavior specified in a Moded Scenarios Description can
be simplified. Consider the term tFixated_i, a temporary variable that records the
current value of monitored variable mOpFix_i. The value of tFixated_i may
be specified by a simple state invariant: [mOpFix_i = True ⇔ tFixated_i =
True]. Thus, rather than the two-state function for tFixated_i defined by Table 3
(an event table), a more abstract one-state function may be defined using an SCR
condition table. Table 8 is an SCR condition table, which specifies a (modeless) one-
state function defining tFixated_i.

123

Autom Softw Eng (2015) 22:159–197 181

3.4.5 Analyzing the state machine model

As other researchers have noted (see, e.g., Damas et al. 2009; Whittle and Schu-
mann 2000), models synthesized from scenarios will have defects, e.g., missing initial
states, syntax errors, and missing cases. To detect such defects, a tool such as the SCR
Consistency Checker (CC) (Heitmeyer et al. 1996, 2005) can be applied. The CC
automatically finds these and many other “well-formedness” errors, including unde-
fined, unused, and duplicate variables, circular dependencies, unreachable modes, and
unwanted nondeterminism. When it detects a problem, the CC displays the table with
the defect and highlights the entry containing the defect. For missing cases and non-
determinism, the CC also presents a counter-example to help the developer diagnose
and fix the problem.

To remove defects in the state machine model, a software developer using a
Moded Scenarios Description has two choices. First, the developer may fix the state
machine model indirectly by making changes to the Moded Scenarios Description
from which the state machine model was synthesized, i.e., by modifying the Event
Sequence Charts, the Mode Diagram, and/or the Scenario Constraint. For example,
the developer may add ESCs, modes, and/or mode transitions to remedy missing
cases, or alternatively may remove an ESC to eliminate nondeterminism. Second,
the developer may make changes to the tabular specification of the state machine
model directly. As noted in Sect. 3.1, in our experience, developers who have dif-
ficulty creating a tabular specification directly are often able to understand, mod-
ify, and extend a tabular specification that is presented to them. Thus, the second
alternative is not unrealistic. Further, a practitioner may prefer the second alter-
native because the effects of changes are more direct and may be easier to pre-
dict.

Once the synthesized model is free of well-formedness errors, other tools can be
applied—a simulator to ensure that the model captures the intended behavior and
verification tools to prove that the model satisfies critical application properties, such
as safety and security properties. Eventually, the model may be used as a basis for
synthesizing source code, at least for parts of the model, such as the system’s control
logic and simple functions.

3.5 Model synthesis tool

A prototype tool, implemented in Java, has been developed which implements the
first three steps of the synthesis method introduced in Sect. 3.4, thus creating a for-
mal system model. As input, the tool currently accepts a textual representation of a
Moded Scenarios Description—i.e., a Mode Diagram, a set of ESCs, and a Scenario
Constraint—and constructs (1) a set of type definitions, a mode class and its com-
ponent modes, and sets of monitored variables, terms, and controlled variables; (2)
an initial state predicate; and (3) the system transform function ρ expressed as a set
of update functions, one for each mode class, term, and controlled variable. The tool
then converts this information into an equivalent SCR specification, expressed in the
XML representation used internally by the SCR toolset. This formal model can then be

123

182 Autom Softw Eng (2015) 22:159–197

viewed, edited, and analyzed using the SCR toolset, thus providing automated support
for steps four and five of our method.

The translation into the formal model is largely straightforward—each set and
function that the tool constructs corresponds to a set or function in the SCR model.
One limitation is that the event sequence charts generally lack information needed to
construct a complete SCR model, and thus the model may not satisfy all typing and
consistency requirements. However, the SCR toolset can be used to identify portions of
the specification that the user needs to provide. One major source of incompleteness
in the generation of the SCR specification is in the variable types; there are cases
where it is not possible to infer the type of a variable. For example, consider the event
labeled 4 in the Event Sequence Chart shown in Fig. 3. In the formal model synthesized
from this chart and from the chart and diagram shown in Figs. 4 and 5, the variables
mNewWP_i, cNewWP_i, and dNewWP_i are all assigned the type UNKTYPE (i.e.,
unknown type) in the generated SCR specification; the user will need to replace these
definitions with an actual type in order for the SCR specification to type check in
the SCR toolset. Other checks performed by the SCR toolset notify the user about
variables for which an initial value has not been defined and about non-determinism
in function definitions.

3.6 Method and tool validation

Currently, the U.S. Navy and other DoD agencies are exploring systems which use
Unmanned Ground Vehicles (UGVs) to assist military personnel in reconnaissance and
surveillance, target identification and designation, counter-mine warfare, and chem-
ical, biological, radiological, nuclear or high-yield explosive missions (DSB 2012).
Because the UGVs require human oversight and control, these systems are examples
of human-centric decision systems. To evaluate the utility of Moded Scenario Descrip-
tions and our model synthesis tool, we conducted a case study of two of these systems.
In contrast to RESCHU, these systems use UGVs (rather than UAVs) to perform tasks
under operator control, and perform different tasks—cargo loading and explosive ord-
nance disposal. For each system, a Mode Diagram and ESCs were formulated to specify
the required system behavior. To validate our method and tool, we manually translated
the ESCs and Mode Diagram for each system into a Moded Scenario Description tex-
tual representation and used our prototype synthesis tool to automatically generate a
formal model. Domain experts found the ESCs and Mode Diagrams easy to understand
and quickly provided feedback on missing and incorrectly specified requirements.
Moreover, other than some minor limitations of the tool’s parser (e.g., it doesn’t accept
the label “2–5” on a mode), the translation into a formal model was straightforward.

3.7 Related work

During the last 15 years, there has been a large volume of research published on
scenarios and synthesis of formal models from scenarios. This research falls into three
categories: (1) Techniques for increasing the expressiveness of scenarios, for making
them more formal, and for combining them, both at the same abstraction level and

123

Autom Softw Eng (2015) 22:159–197 183

at different abstraction levels; (2) methods for scenario-based synthesis of formal
models; and (3) techniques for tool-based analysis of the synthesized models.

Regarding expressiveness, in ESCs, one or more variables are associated with each
entity. In contrast, variables are not explicit in MSCs. To address this lack of expres-
siveness, researchers have combined MSCs with other formalisms that include state
variables (see, e.g., Whittle and Schumann 2000; Damas et al. 2005; Uchitel et al.
2009). Fluents, propositions expressed by an initial value and sets of initiating and
terminating events, are one such formalism (Giannakopoulou and Magee 2003). A flu-
ent may be viewed as a state variable with an initial value and an update function.
Fluents can be used to guard the occurrence of an event (Damas et al. 2009), and
properties expressed in Fluent Temporal Logic (FTL) can be used to describe pre-
conditions on messages (Uchitel et al. 2009). These uses of fluents are similar to
our use of conditioned events. In Damas et al. (2009), fluents are used inside High-
level Message Sequence Charts (HMSCs) to indicate which MSCs are enabled and
thus determine high level behavior. Used this way, fluents are similar to modes. To
constrain UML sequence diagrams (similar to MSCs), Whittle and Schumann use
state variables to specify pre- and postconditions on events in the Object Constraint
Language (OCL) (Whittle and Schumann 2000). The OCL preconditions play a role
similar to our conditions; the OCL postconditions are similar to the effects of our
events. Other work on extending MSCs for expressiveness includes specification of
negative scenarios (Damas et al. 2005) and the use of properties to specify allowed
but not necessarily required system behavior (Uchitel et al. 2009).

Regarding the combination of scenarios, some researchers express relationships
between MSCs by attaching state labels to a component at appropriate points (see,
e.g., Uchitel et al. 2003). Using the same label in multiple scenarios indicates that the
component is in the same state in these scenarios and that at this execution point the
component’s subsequent behavior can be that of any MSC at the point immediately
following the label. In contrast, we relate ESCs using the chart labels on the event
sequences in the ESCs and the diagram labels in the Mode Diagram. Rather than
representing a single identical state (as state labels do in MSCs), modes represent an
equivalence class of states, and thus, do not indicate points where execution can switch
from one ESC to another.

Regarding scenario-based synthesis of formal models, many researchers have syn-
thesized state machine models from MSCs (e.g., Uchitel et al. 2003; Damas et al. 2005,
2009; Uchitel et al. 2009). Uchitel et al. have synthesized Labeled Transition Systems
(LTSs) from MSCs using HSMCs and state labels to describe the relationships between
the MSCs (Uchitel et al. 2003). Damas et al. have synthesized LTSs from positive and
negative scenarios specified as MSCs (Damas et al. 2005). In Damas et al. (2009), an
LTS is synthesized from HMSCs with the addition of fluents used as guards on the
execution of MSCs in the HMSC’s hierarchy. Unfortunately, the state space generated
from an LTS specification may be very large. In an industrial case study, for example,
658 LTS states were generated (Uchitel et al. 2003), making the model incomprehensi-
ble to the human user. In contrast, our models are expressed as a set of update functions
in a tabular format, which leads to a state machine model more easily understood at
the local level. Further, modes are a system-level abstraction which leads to fewer
states and thus makes the model easy to understand at the global level. In Whittle and

123

184 Autom Softw Eng (2015) 22:159–197

Table 9 Notation for the cognitive model

Symbol Usage

AT Available time
DMOO Dynamic model of operator overload
FO Fan-out
IT Interaction time
NT Neglect time
PIH Path-intersects hazard
WTAA Wait time for attention allocation
WTQ Wait time in the decision-making queue
WQF Wait queue fixations

Schumann (2000), statechart models, rather than LTSs, are synthesized from UML
sequence diagrams and OCL constraints, producing a more human-readable model.

Regarding formal model analysis, researchers have proposed many techniques for
analyzing the synthesized models. For example, the fluent guards in the synthesized
guarded LTS model can be checked for completeness, disjointness, and reachability,
and FLT properties can be analyzed by model checking the LTS model (Damas et al.
2009). State invariants that hold for a synthesized LTS model can be generated from the
model in combination with either fluents (Damas et al. 2005) or FTL properties (Damas
et al. 2009). Alur and Yannakakis (Alur and Yannakakis 1999) describe how individual
MSCs, MSC-graphs consisting of multiple MSCs, and HMSCs can be linearized into
an automaton and verified using model checking. As stated in Sect. 3.1, the SCR toolset
supports all of these techniques, i.e., consistency checking, invariant generation, model
checking, and theorem proving, in a single toolset.

4 Cognitive model

In the cognitive sciences, cognitive workload is a notoriously difficult concept to
study (Gray and Boehm-Davis 2000). To date, there have been no complete theories
of detecting high workload or general methods for predicting when an operator is
overloaded. Our approach is to focus our human workload research on a specific
problem type—single-human-multiple-robots (SHMR).3 Recently, we completed a
study (Breslow et al. 2014) whose goal was to develop a theoretical model that predicts
when a human operator, working in a SHMR environment, becomes overloaded. Such
a model can help identify situations in which an adaptive agent could assist the operator
by taking over one or more operator tasks. Table 9 defines the notation used in this
section.

Crandall et al. proposed that the maximum number of robots that a single human
operator could control, called fan-out (FO), could be computed as FO = NT/IT + 1,
where NT (Neglect Time) is the amount of time an operator can ignore a robot before
the robot’s performance drops below some predetermined level, and IT (Interaction
Time) is the amount of time that the operator requires to restore the robot’s performance

3 We treat multiple robots as a generalization of multiple UAVs.

123

Autom Softw Eng (2015) 22:159–197 185

to the predetermined level (Crandall et al. 2005). This equation defines fan-out as the
maximum number of vehicles an operator can interact with (taking time IT for each)
while another vehicle is running autonomously (for time NT). The “+1” in the equation
accounts for the neglected autonomous vehicle.

While Crandall et al.’s fan-out model focused on task variables, Cummings and
Mitchell extended the model to include variables that concerned human information
processing (Cummings and Mitchell 2008), specifically those relating to the overhead
of delays, or wait times, in addition to the duration of direct interaction (IT) with
a vehicle requiring attention. These wait times, WTAA (Wait Time for Attention
Allocation) and WTQ (Wait Time in the decision-making Queue), are combined with
IT in the denominator of the ratio: FO = (NT/(IT + WTAA + WTQ)) + 1.

One limitation of fan-out models is that they do not predict performance during
the course of a SHMR session. Even when the number of robots supervised is within
the constraints specified by a fan-out model, there will be times when the operator
is overloaded and as a result subject to error. This becomes clear when we consider
that the components of the fan-out model (IT, NT, WTAA, WTQ) fluctuate from their
typical values during the course of a session and at times will conspire to increase
the likelihood of error, whether through the increase in the interaction time needed to
maintain a vehicle (IT) or the increase in the wait times, WTAA and WTQ, as a result
of several vehicles requiring attention at the same time.

To address this limitation, we have developed a DMOO (dynamic model of operator
overload) (Ratwani and Trafton 2011; Gartenberg et al. 2013; Breslow et al. 2014) to
predict operator overload during the course of a SHMR session. In applying this model
in the case of an operator of multiple UAVs (as in RESCHU), we consider preventing
operator overload to be equivalent to preventing UAV damage from a hazard area,
because we assume that operator overload is the reason that a UAV takes damage due
to a PIH (Path-Intersects Hazard) event. Our model, DMOO, uses three variables—
WTAA and two new variables, WQF (Wait Queue Fixations) and AT (Available Time).
All of these can be operationalized in a real-time environment:

WTAA: The amount of time to recognize that the focal UAV (i.e., the UAV involved
in a PIH event) requires attention. Operationalized as the duration from the
start of a PIH event until the relevant hazard was first looked at.

WQF: The number of eye fixations on non-focal objects.

AT: The interval from when a vehicle enters on a collision course with a hazard
(i.e., the start of the PIH event) until it would make contact with the hazard if
successful evasive action were not taken. This interval is the time available
to the operator to recognize and remedy the threat.

Our model of fan-out in Breslow et al. (2014) is expressed in terms of these concepts
as FO = AT/(IT + WTAA + WTQ). Because our DMOO is used in predicting the
prevention of damage on a per-event basis, activities during IT—the time spent on
actions resulting in the successful avoidance of damage during a PIH event—clearly
are not independent of what we are trying to predict. Thus IT is not included in our
DMOO logistic regression equation in Breslow et al. (2014):

123

186 Autom Softw Eng (2015) 22:159–197

Predicted Logit of Damage = 2.17 + (.00007 ∗ WTAA) + (.11 ∗ WQF)

− (.00027 ∗ AT)

This equation uses WQF rather than WTQ because our experiments measured wait
times by observing eye fixations rather than manual actions.

Using an eye-tracker to measure where an operator is looking (called a fixation) and
how long an operator looks at something (called the fixation duration), the experiments
recorded operator fixations on a computer screen (Rayner and Morris 1990; Rayner
1998). Different eye movement measures have been shown to be indicators of cognitive
processing (Rayner and Morris 1990; Rayner 1998; Just and Carpenter 1976). In the
current work, we used eye fixations as a measure of operator attention allocation. For
a full justification for this assumption, see Breslow et al. (2014).

As described in Breslow et al. (2014), our DMOO was developed using logis-
tic regression analysis and the results of a RESCHU experiment with 35 partici-
pants that recorded the damage outcome and the values of WTAA, WQF, and AT
for each PIH event. The model provided a strong fit to the data from which it was
generated. One measure of fit, d′ (Fawcett 2006; Swets 1996), was 2.7; a value of
over 2 is typically acceptable for automation work. The model was later evaluated
in a replication of the baseline experiment (d′ = 2.4). The model’s generalizability
was assessed by factorial comparisons (Swets 1996) of the initial RESCHU plat-
form to platform variations, including where engagement was time-constrained and
thus harder (d′ = 2.2), where engagement was automated and thus easier d′ = 2.6),
where UAVs moved faster (d′ = 1.7) or slower (d′ = 2.3) than in the baseline, and
where the operator supervised heterogeneous vehicles—HALEs (High Altitude Long
Endurance UAVs), UUVs (Unmanned Underwater Vehicles), and UAVs—(d′ = 2.4),
rather than only UAVs. In all cases, except the high-altitude UAVs, generalization was
excellent.

Additionally, the DMOO has been incorporated into the RESCHU platform as
the basis for alerting the operator to PIHs as soon as a high likelihood of damage
was predicted. Here the model assesses the likelihood of damage repeatedly during
the course of each PIH event, rather than after the fact, and as soon as it predicts
damage is probable, it alerts the user to the threat. The model-based alert system
has been tested in several experiments and found to reduce instances of damage by
as much as half (Breslow et al. 2014; Gartenberg et al. 2013). The model-based
alerts typically occur after an elapse of approximately 20 % of the time between
identifying a UAV’s proximity to a hazard and occurrence of damage (i.e., 20 %
of AT), thus providing a timely warning. Thus, the DMOO has practical utility in
helping operators cope with overload in SHMR supervisory control tasks. It also has
theoretical value in highlighting the roles of attention and planning in multitasking
contexts.

5 Adaptive agents

In a human-centric decision system, an adaptive agent can assist the operator when he
or she is overloaded. Our goal is to evaluate a large variety of agent designs for a given

123

Autom Softw Eng (2015) 22:159–197 187

Table 10 Method for synthesizing and applying user models

1. Gather traces of human behavior in an initial participant study
2. Synthesize user models from traces

Extract feature vectors from traces
Construct an expert operator
Reduce capabilities of expert operator to match user feature vectors

3. Evaluate whether the models accurately emulate humans
Train a user classifier on the actual human traces
Extract traces from the user models
See if classifier is fooled into thinking the models’ traces came from the corresponding humans
If the model fails to fool the classifier, go back to Step 2

4. Iterate agent design using the user models:
Build/modify an agent
Use the user models to test the agent
Stop iteration if agent performance meets prespecified performance metric

(E.g., if agent helps users achieve fewer missed targets per session)
5. Test agent performance with human participants

system (e.g., RESCHU) to determine which designs best assist the user. Traditionally,
developers evaluate an agent’s performance by conducting human participant studies,
iterating the process many times as the agent is refined. However, evaluating all agent
designs using human participants is problematic given that even small participant
studies require substantial time and resources, including any required for institutional
approval, resulting in very slow iterations. To address this problem, our approach uses
synthesized user models instead of humans for some iterations. User models are given
the same observations a human would be given and must produce specific actions.
Simulated user studies with these models are inexpensive, can be performed quickly,
and require no approval process. Hence, they are an efficient way to identify problems
with an agent design.

Like others, we frame synthesis of user models as an imitation learning task
(Sammut et al. 1992), where the goal is for the models to learn to operate by imi-
tating the behavior of humans. Our work differs from most earlier work in imitation
learning because, in our case, building an observation-action model without a sub-
stantial amount of state abstraction is infeasible. One exception was described by the
developers of RESCHU (Boussemart and Cummings 2008), who also used learning
to obtain abstract user models for RESCHU. However, unlike ours, their models are
descriptive and cannot be used to generate actual operations in RESCHU. Furthermore,
their models do not describe individual users, but an aggregate of users.

5.1 Case study

Table 10 summarizes our five-step method for learning user models and applying them
to evaluate agent designs. This section describes the first four steps of this method and
their initial application involving RESCHU. The method’s final step, human evaluation
of an agent, was not performed in this study.

123

188 Autom Softw Eng (2015) 22:159–197

Table 11 The highest weighted features and their discrimination scores, where high level actions are shown
in this font

Feature Weight

Average distance to hazard before action .71
Tally: change goal .49
Bigram tally: engage target→change goal .29
Bigram tally: change goal→engage target .23
Tally: engage target .18
Bigram tally: change goal→add WP .13
Bigram tally: change goal→change goal .12
Tally: delete WP .12
Average distance between UAVs .12

Step 1. Gathering Initial Traces: The method begins with a set of traces of human
behavior (i.e., sequences of observed human actions and environmental updates to the
display). In our case study, these traces were obtained from data collected in previous
studies with RESCHU involving human participants.

We collected ten traces from each of eight human users. Each trace recorded, twice
a second for a 5-min period, the user’s actions and observations available to the user
while operating RESCHU. The available observations include the locations of UAVs,
hazards, and targets. They also include waypoint and target-assignment information,
the location of the sequence of waypoints for each UAV, and the target (if any) assigned
to each UAV. The user actions in a trace are captured at a high level of abstraction
(e.g., “delete waypoint” instead of “delete the waypoint at location x for UAV_i”).
In RESCHU, the user can perform six high level actions. Five are available at any
time: change the assignments of UAVs to targets (change goal), insert a waypoint
(insert WP), delete a waypoint (delete WP), move a waypoint (move WP), and
do nothing (NOP). The sixth action, engage a target (engage target), is available
only when a UAV has arrived at its assigned target. Though we retained no identifying
information about users, each is referred to by an index from 1 to 8.

Step 2. Synthesizing User Models: In this step, we synthesize a model for each human
user in the data set. Because the user may have a large number of possible observations
in RESCHU (∼ 10124), directly building an observation-action model such as those in
Sammut et al. (1992) and Šuc et al. (2004) would require significant state abstraction.
Instead, we produced our user models by first extracting a vector of features from
each user trace, and then using them with a manually specified expert operator (an
implementation that behaves like a near-optimal user). In our case study, we identified
a set of 36 features, and based on these features extracted a feature vector from each
of the 80 traces. We then assigned weights to features using a variant of the RELIEF
feature weighting algorithm (Kira and Rendell 1992), which allowed us to judge
which features best distinguish our eight users (i.e., features with a high variability
among users, but low variability within vectors generated by a single user). We chose
RELIEF over other feature weighting algorithms due to its popularity and ease of
implementation. Table 11 shows the top weighted features.

123

Autom Softw Eng (2015) 22:159–197 189

Features considered included tallies over the six high level actions, tallies over the
25 “bigrams” for the five non-NOP actions (where A→ B is the number of times Bwas
the first non-NOP action after A), the average proximity to a hazard a UAV reached
before a user rerouted it, the average distance between the UAVs, the average time a
UAV was idle (i.e., between when it arrived at its target and when the user engaged
that target), the average number of (non-NOP) actions the user took divided by the
user’s performance score (as a measure of action efficiency), and the average amount
of time a user waited between when a UAV’s path crossed a hazard area and taking
action to reroute the UAV. Note that the engage target tally is the same as the
performance measure (the number of targets engaged).

We used the results of RELIEF to build models of individual users. To begin, we
built a simple rule-based expert operator who followed three rules:

1. if there is a UAV waiting at a target, engage that target.
2. else if the UAV target assignments are “suboptimal” (using a greedy nearest target

to UAV calculation), reassign the targets greedily (using change goals).
3. else if a UAV’s flight path crosses a hazard area, reroute the UAV around the hazard

(using add WP).

This simple expert operator performs well, acquiring an average of 27.3 targets per
5-min session, compared to an average of 21.7 targets acquired per session for human
users. Since reaction time is a limiting factor in human-user performance for RESCHU,
our expert operator outperformed our best human operator; the highest scoring human
user averaged 24.5 targets per session.

This expert operator served as a basis for constructing individual user models.
Based on the results shown in Table 11, we constrained our expert operator to mimic
the two highest weighted features: the user’s average distance to hazard before an
evasive action and the user’s average total number of change goal actions. We
also constrained the expert operator to mimic the user’s average UAV idle time, a
feature that, while not one of the highest weighted features, was easy to implement:
The expert operator can simply delay engaging a target to better match the user’s
average UAV idle time.

Step 3. Evaluating the User Models: In this step, we compared the behavior of the
synthesized user models to that of the actual humans. Because there is substantial
interdependence among the features in a user’s feature vector, we hypothesize that it
would be difficult to generate a trace that produces a similar feature vector but operates
with a markedly different style. We implemented the sub-steps of Step 3 and trained
a classifier to distinguish human users by their feature vectors, extracted traces from
the user models, then tested whether the classifier could distinguish human users from
their models.

For each of our eight human users, we had ten vectors of 36 real-valued features.
Thus, training a classifier was a straightforward application of multiclass supervised
learning, with the classes being the eight individual users. We trained a suite of 35
classifiers from the PyMVPA toolkit (Hanke et al. 2009) using leave-one-out cross-
validation (i.e., train the classifiers on nine of a user’s vectors and use the tenth for

123

190 Autom Softw Eng (2015) 22:159–197

validation, repeating this process ten times so that each vector is used for validation
once). Included in the classifier suite were various parameterizations of Bayes Logistic
Regression, Naive Bayes, Gaussian Process Classifier, k-Nearest Neighbors, Least-
Angle Regression, Sparse Multinomial Logistic Regression, Elastic Networks, and
Support Vector Machines (SVMs) with various kernels. The most accurate of these
classifiers for our data was an SVM with a polynomial kernel (Poly-SVM), which
yields an average of 62.5 % accuracy on the test set (compared to 12.5 % accuracy for
a random classifier).

Applying the synthesized user models, we generated ten new traces for each of our
eight users with the aim of mimicking each user. Poly-SVM’s classification accuracy
was 27.5 % on these traces. That is, given a trace generated by the model for user
u, the classifier correctly identified the trace as coming from user u 27.5 % of the
time. (In comparison, a random classifier yields an accuracy of only 12.5 %.) For
this classifier, we consider a practical upper limit to be 62.5 % because this is the
classifier’s accuracy on actual human traces. While our classifier’s identification of the
user models is significantly better than random, our models do not emulate their human
counterparts with sufficient accuracy. In practice, we want both the classifier and the
model accuracy to be higher. The current results may be improved by returning to Step
2 and using the classifier’s predictions to guide our selections of new combinations of
features for use in synthesizing user models.

Step 4. Testing an Agent Design: Once the user models meet a pre-specified level of
classification accuracy, they may be applied to evaluate agent designs. In our case
study, we implemented an agent that constantly “suggested” an action (i.e., the action
the expert operator would perform) at every step of the session. The user (or the user
model) then had the choice of executing a high level action, or invoking the agent,
which would then execute its suggested action. We had no model for how users would
use an agent (as there were no agents available to them when we collected their traces),
so we parameterized the user models’ interaction with the agent using a parameter p
that denotes the percent probability that a user model will invoke the agent at any
particular time.

We learned eight user models and tested their performance in RESCHU with the
agent, varying p from 0 to 100 %. The performance metric used was the number
of targets acquired. Figure 6 shows the results of our experiment. When p = 0 %,
each model performs as if there is no agent. When p = 100 %, the models behave
identically to the expert operator, i.e., as if the behavior is totally automated. While
performance increases with p for all user models, the models with the lowest non-
assisted performance benefit the most from the agent. For this application, it would
be feasible to set p = 100 %, because the number of suggestions given by the agent
averages one every 3.3 s (and the agent rarely provides more than one suggestion per
second). However, in a human-centric decision system, user participation is essential,
and too much automation (setting p to 100 %) inadvisable because it will lead to user
disengagement.

123

Autom Softw Eng (2015) 22:159–197 191

Fig. 6 User models’ performance using agent. The thin lines denote individual user models’ performances,
while the thick line denotes average performance

5.2 Adjusting agent interaction for different user types

Although the results presented above and described in Pickett et al. (2013) show that
assistance from an agent can improve a user’s (or user model’s) performance, an overly
active agent may interfere with a user’s goals, causing a decrease in performance.
Thus, the question of when an agent should provide assistance to a user must also
be addressed. This section describes new results in which a modified agent “stalls”
individual UAVs when the UAV comes within a certain threshold distance t to a hazard.
We found that the optimal choice of this threshold varies for different user models, with
higher-performing user models generally requiring a shorter distance (and therefore
less assistance) than lower-performing users.

These results could be used to design an agent that assists two classes of operator,
low-performing (Class 1) and high-performing (Class 2). Figure 7 shows a Mode
Diagram and an ESC for such a system, where min1 is the threshold for stalling a
UAV for Class 1 operators and min2 the threshold for Class 2 operators. This agent
design also has a threshold tooclose, the point at which an operator cannot act
in time to prevent damage to a UAV and the agent must take corrective action. For a
Class 1 operator, the agent pauses the UAV when distance mdist2haz_i is less than
min1 but not less than min2. In Fig. 7, this required system behavior is represented
by transition 4 in the Mode Diagram and event sequence 4 in the ESC “OpControl_b”.
For a Class 2 operator, the system pauses the UAV when mdist2haz_i is less than
min2 but greater than tooclose. The Mode Diagram also covers cases in which
the operator adds a waypoint when mdist2haz_i ≥ min1 (thus the agent need
not pause the UAV) and when the UAV is too close to the hazard (mdist2haz_i <

tooclose) for the operator to act in time (thus the Agent moves the waypoint). To
save space, Fig. 7 shows only one ESC. Note that the Scenario Constraint in a Moded
Scenarios Description for this system would include the predicate “min1 > min2 >

tooclose” and define the constants min1, min2, and tooclose.

123

192 Autom Softw Eng (2015) 22:159–197

Haz_on_path

Agent_control

Op_control2

MC: M_i

1

!

3
2

4

7

6
5

9

8

Op_control1

OK

mUAV_i = safe

OpControl_b

dNewWP_i=x

dUAV_i=safe

cNewWP_i=x

System
Agent Display

UAV
traj_i

dUAV_i=unsafe

mNewWP_i=x

1

5

6

mdist2haz_i<min1 WHEN
mdist2haz_i min2 AND
yOpclass_k=1 !

4

UAV_i
Cog

Model
Dist2
Haz_i

Op
Cmd

cPause_i=true
dPause_i=true

cPause_i=false
dPause_i=false

mUAV_i=unsafe WHEN mdist2haz_i tooclose

Fig. 7 Mode diagram and Event Sequence Chart for a system with two operator classes

The goal of our experiment was to collect data about how different thresholds
affect operator performance, since such data could be used to determine appropriate
thresholds for use in designing a threshold-triggered agent. As noted above, in this
experiment, when a threshold is crossed, the agent pauses the UAV (i.e., as if it is flying
in a tight holding pattern). This modification helps the operator maintain situational
awareness; missions cannot be accomplished without the user’s participation.

While stalling a UAV prevents it from entering a hazard area and being damaged,
it can also delay the UAV’s arrival at its target. To find the optimal value for the
threshold distance t for each user model, we ran each of our eight user models using
agents with t ranging from 0 (the agent never assists) to 40 (the agent frequently
assists). Figure 8 shows the performance results (averaged over 100 trials) for the
lowest and highest performing user models. Compared to operating without an agent,
the higher-performing user model benefits most from a low distance threshold (i.e.,
a less proactive agent), but has reduced performance when interacting with an overly
intrusive agent. We hypothesize that this is because the optimal strategy for a user
model might sometimes be to fly a UAV near (but not entering) a hazard area. An
overly intrusive agent would prevent this possibility. In contrast, our lower-performing
user model’s performance did not substantially vary with t .

123

Autom Softw Eng (2015) 22:159–197 193

Fig. 8 User models’ performance using agent with different target distance thresholds. A high-performing
user model requires less help from the agent

The modified agent used in this experiment allows for tight integration with cog-
nitive models, such as those described in Sect. 4. Instead of using the distance from a
UAV to a hazard as the threshold for determining when an agent should assist a user,
we could instead define a threshold based on the probability that a user will allow a
UAV to enter a hazard area. A cognitive model computes this probability.

6 Future work

We are currently developing a graphical front-end for the model synthesis tool that
would allow a practitioner to develop graphical representations of ESCs that resemble
those shown in Figs. 3 and 4 (see Sect. 3.2.1) and to graphically specify the Mode
Diagram for a Moded Scenarios Description (as in Fig. 5 of Sect. 3.2.2). This graphical
front-end is being developed using the NetBeans Visual Library, which is already used
in the SCR toolset to construct variable dependency graphs.

A future issue is how to synthesize and compose models with more than a single
mode class. In the hazard avoidance task, the operator manages a team of many UAVs,
rather than a single UAV. By creating n versions of the system model synthesized
from the ESCs and Mode Diagram in Figs. 3, 4, and 5, the developer can create n
models, each with a mode class M_i, i = 1, 2, . . . , n. Composing these will produce
a system that, with the agent, protects n UAVs from hazards, rather than a single one.
When the individual UAVs in a team are independent of one another, the composition
is essentially parallel, and can be done by simply combining the tables of all of the
n models. When models of systems that interact with one another are composed,
the composition may need to add constraints that limit the interaction. For example,
particular modes of two or more systems may be incompatible; e.g., a UAV that
is avoiding a hazard should not initiate a targeting task. How best to capture this

123

194 Autom Softw Eng (2015) 22:159–197

incompatibility (i.e., “feature interaction”) using scenarios and tabular requirements
specifications is an open question.

The current cognitive model focuses on the hazard avoidance task, predicting when
an operator becomes overloaded and how to minimize damage to UAVs from threats.
While the theory is applicable in any task in which the operator manages multiple
UAVs, it has not yet been applied to other tasks. Ongoing work is examining how
to use our theoretical model, DMOO, to predict operator overload during secondary
tasks like engaging a target and also increasing levels of autonomy in the system as
the probability of taking damage increases.

Ongoing research also includes fully automating the process of learning user models
from traces, and testing the derived models more thoroughly. We plan to extend our
RESCHU case study to include many iterations of agent development (i.e., iterating
Steps 2–4 of the method). One major research issue is validating user models. The
hypothesis that a user model that matches a user’s feature vector will also match the
user’s style of operation requires validation. The interdependence of the user’s features
also needs to be assessed (e.g., by omitting the “bigram tally: engage target →
change goal” feature to see if a user model matching the other features also matches
this feature). Future work on adaptive agents also includes improvements in each of
the five steps of our method for learning user models and applying them to evaluate
agent designs. In particular, we have left as future work agent design validation using
human participants (Step 5). We also plan to iterate Steps 2 and 3 with the aim of
improving the fidelity of our user models.

7 Conclusions

This paper has presented a Moded Scenarios Description, a new technique which
allows a developer to specify the required behavior of complex systems in terms of
scenarios. A Moded Scenarios Description includes Event Sequence Charts, a variant
of Message Sequence Charts; a Mode Diagram; and a Scenario Constraint. The paper
also introduced a formal model for a Moded Scenarios Description, a method for
transforming the description into a formal state machine model, and two algorithms
that construct the next-state function of the state machine model from the description.
The state machine model is represented in a scalable tabular format which has proven
in practice to be both human readable and easy to change. We illustrated our new
method by applying it to a hazard avoidance task for a system that manages UAVs,
using an adaptive agent to assist the system operator.

After reviewing the process for synthesizing user models presented in Pickett et al.
(2013) and Heitmeyer et al. (2013a), this paper introduced the results of new research
showing how different user models for a hazard avoidance task perform under different
values for the distance threshold t at which the adaptive agent is triggered in a hazard
avoidance scenario. This agent design facilitates integrating the agent and a cognitive
model of the user; a slight variation of the agent can threshold on predictive values
returned by the cognitive model.

The cognitive model can predict in real-time when an operator is overloaded. The
model is theoretically based and uses cognitive science and engineering principles to

123

Autom Softw Eng (2015) 22:159–197 195

monitor operator workload. The model has been tested across multiple experiments
and has been shown to reduce damage to UAVs (Breslow et al. 2014; Gartenberg et al.
2013). The cognitive model is important not only because it is able to predict operator
workload and prevent UAV damage, but also because it can be integrated into other
systems where understanding whether an operator is overloaded is important. Inte-
grating the theoretical model of workload, the agent approach to automation, and high
assurance methods has the potential to significantly improve the overall performance
of systems and to provide high assurance that human-centric decision systems behave
as intended.

Acknowledgments We gratefully acknowledge the contributions of Len Breslow to the research on
cognitive models, of Carolyn Gasarch of NRL who built the prototype model synthesis tool, and of Michael
Thomas of the University of Maryland who applied the synthesis tool to the UGV applications. This research
is supported by the Office of Naval Research.

References

Alspaugh, T.A., Faulk, S.R., Britton, K.H., Parker, R.A., Parnas, D.L., Shore, J.E.: Software requirements
for the A-7E aircraft. Tech. Rep. NRL-9194, Naval Research Laboratory, Washington, DC (1992)

Alur, R., Yannakakis, M.: Model checking of Message Sequence Charts. Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (CONCUR), pp. 114–129. Eindhoven, The Netherlands
(1999)

Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving. Ann Math Artif Intell
29(1–4), 131–189 (2001)

Bharadwaj, R., Heitmeyer, C.: Developing high assurance avionics systems with the SCR requirements
method. In: Proceedings of the 19th Digital Avionics Systems Conference (DASC), Philadelphia,
Pennsylvania (2000)

Boussemart, Y., Cummings, M.: Behavioral recognition and prediction of an operator supervising multiple
heterogeneous unmanned vehicles. In: Proceedings of the 1st International Conference on Humans
Operating Unmanned Systems (HUMOUS), Brest, France (2008)

Breslow, L.A., Gartenberg, D., McCurry, J.M., Trafton, J.G.: Dynamic operator overload: A model for
predicting workload during supervisory control. IEEE Trans Hum Mach Syst 44(1), 30–40 (2014)

Bumiller, E., Shanker, T.: War evolves with drones, some tiny as bugs. New York Times, (2011)
Crandall, J.W., Goodrich, M.A., D R Olsen, J., Nielsen, C.W.: Validating human-robot systems in multi-

tasking environments. IEEE Transactions on Systems, Man, and Cybernetics 35(4), 438–449 (2005)
Cummings, M.L., Mitchell, P.J.: Predicting controller capacity in supervisory control of multiple UAVs.

IEEE Trans Syst Man Cybern 38(2), 451–460 (2008)
Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating annotated behavior models from

end-user scenarios. IEEE Trans Softw Eng 31(12), 1056–1073 (2005)
Damas, C., Lambeau, B., Roucoux, F., van Lamsweerde, A.: Analyzing critical process models through

behavior model synthesis. In: Proceedings of the 31st International Conference on Software Engineer-
ing (ICSE), pp. 241–251. Vancouver, Canada (2009)

DSB: The role of autonomy in DoD systems. Tech. rep., Defense Science Board, Office of the Under
Secretary of Defense for Acquisition, Technology and Logistics, Washington, DC (2012)

Fawcett, T.: An introduction to ROC analysis. Pattern Recognit Lett 27(8), 861–874 (2006)
Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from requirements specifications.

In: Proceedings of the 7th European Software Engineering Conference and 7th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), pp. 146–162. Toulouse, France
(1999)

Gartenberg, D., Breslow, L., Park, J., McCurry, J., Trafton, J.: Adaptive automation and cue invocation: The
effect of cue timing on operator error. In: Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI), pp. 3121–3130. France, Paris (2013)

Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems. ACM SIGSOFT Softw
Eng Notes 28, 257–266 (2003)

123

196 Autom Softw Eng (2015) 22:159–197

Gray, W.D., Boehm-Davis, D.A.: Milliseconds matter: An introduction to microstrategies and to their use
in describing and predicting interactive behavior. J Exp Psychol 6(4), 322 (2000)

Hanke, M., Halchenko, Y.O., Sederberg, P.B., Olivetti, E., Fründ, I., Rieger, J.W., Herrmann, C.S., Haxby,
J.V., Hanson, S.J., Pollmann, S.: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI
data. Neuroinformatics 7(1), 37–53 (2009)

Heitmeyer, C., Jeffords, R.: Applying a formal requirements method to three NASA systems: Lessons
learned. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, p 84 (2007)

Heitmeyer, C., Kirby, J., Labaw, B., Archer, M., Bharadwaj, R.: Using abstraction and model checking to
detect safety violations in requirements specifications. IEEE Trans Softw Eng 24(11), 927–948 (1998)

Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing requirements specifications:
The SCR toolset at the age of ten. Comput Syst Sci Eng 20(1), 19–35 (2005)

Heitmeyer, C., Pickett, M., Breslow, L., Aha, D., Trafton, J.G., Leonard, E.: High assurance human-centric
decision systems. In: Proc of the 2nd International NSF-Sponsored Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE) (2013a)

Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of requirements specifica-
tions. ACM Trans Softw Eng Methodol 5(3), 231–261 (1996)

Heitmeyer, C.L., Archer, M.M., Leonard, E.I., McLean, J.D.: Applying formal methods to a certifiably
secure software system. IEEE Trans Softw Eng 34(1), 82–98 (2008)

Heitmeyer, C.L., Shukla, S., Archer, M.M., Leonard, E.I.: On model-based software development. In:
Munch, J., Schmid, K. (eds) Perspectives on the Future of Software Engineering, Springer, Berlin,
Germany, pp 49–60 (2013b)

Heninger, K.L.: Specifying software requirements for complex systems: New techniques and their applica-
tion. IEEE Trans Softw Eng 6(1), 2–13 (1980)

ITU: Message Sequence Charts. Recommendation Z.120, Intern. Telecomm. Union, Telecomm. Standard-
ization Sector (1999)

Jeffords, R., Heitmeyer, C.: Automatic generation of state invariants from requirements specifications. In:
Proceedings of the 6th ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE),
pp. 56–69. Lake Buena Vista, Florida (1998)

Jeffords, R.D., Heitmeyer, C.L.: A strategy for efficiently verifying requirements. ACM SIGSOFT Softw
Eng Notes 28, 28–37 (2003)

Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cogn Psychol 8(4), 441–480 (1976)
Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the 9th International

Workshop on Machine Learning (ML), pp. 249–256. Aberdeen, Scotland (1992)
Leonard, E.I., Heitmeyer, C.L.: Program synthesis from formal requirements specifications using APTS.

High Order Symb Comput 16(1–2), 63–92 (2003)
Leonard, E.I., Archer, M., Heitmeyer, C.L., Jeffords, R.D.: Direct generation of invariants for reactive mod-

els. In: Proc. 10th ACM/IEEE Conference on Formal Methods and Models for Co-Design (MEM-
OCODE), pp 119–130 (2012)

Pickett, M., Aha, D.W., Trafton, J.G.: Acquiring user models to test automated assistants. In: Proceedings
of the 26th International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp
112–117 (2013)

Ratwani, R., Trafton, J.G.: A real-time eye tracking system for predicting postcompletion errors. Hum
Comput Interact 26(3), 205–245 (2011)

Rayner, K.: Eye movements in reading and information processing: 20 years of research. Psychol Bull
124(3), 372 (1998)

Rayner, K., Morris, R.K.: Do eye movements reflect higher order processes in reading? In: From Eye
to Mind. Information Acquisition in Perception, Search, and Reading, North-Holland, pp 191–204
(1990)

Rothamel, T., Heitmeyer, C., Leonard, E., Liu, A.: Generating optimized code from SCR specifications. In:
Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2006) (2006)

Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Sleeman, D.H., Edwards, P. (eds.)
Proceedings of the 9th International Workshop on Machine Learning (ML), pp. 385–393. Morgan
Kaufmann, Aberdeen, Scotland (1992)

Selic, B.: The pragmatics of model-driven development. IEEE Softw 20(5), 19–25 (2003)
Sengupta, S.: U.S. border agency allows others to use its drones. New York Times, (2013)

123

Autom Softw Eng (2015) 22:159–197 197

Šuc, D., Bratko, I., Sammut, C.: Learning to fly simple and robust. In: Proceedings of the 15th European
Conference on Machine Learning (ECML), pp. 407–418. Pisa, Italy (2004)

Swets, J.A.: Signal detection theory and ROC analysis in psychology and diagnostics: Collected Papers.
Lawrence Erlbaum Associates, Mahawa (1996)

Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios. IEEE Trans Softw Eng
29(2), 99–115 (2003)

Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behaviour model synthesis from properties and
scenarios. IEEE Trans Softw Eng 35(3), 384–406 (2009)

US Senate: The future of drones in America: law enforcement and privacy considerations, hearing before
the Committee on the Judiciary. Tech. Rep. J-113-10, Washington, DC (2013)

Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE), pp. 314–323. Limerick, Ireland (2000)

123

	Building high assurance human-centric decision systems
	Abstract
	1 Introduction
	2 Human-centric decision system: overview
	2.1 Example of a human-centric decision system: RESCHU
	2.2 System development process

	3 Synthesis of formal system models from scenarios
	3.1 Background: SCR tabular notation, model, and toolset
	3.2 Specifying scenarios using Event Sequence Charts and Mode Diagrams
	3.2.1 Two examples of Event Sequence Charts
	3.2.2 Example of a Mode Diagram
	3.2.3 Scenario Constraint: examples

	3.3 Formal model of a Moded Scenarios Description
	3.3.1 Event Sequence Charts (ESCs)
	3.3.2 Mode Diagram
	3.3.3 Scenario Constraint
	3.3.4 Moded Scenarios Description

	3.4 Synthesizing a formal model from a Moded Scenarios Description
	3.4.1 Construct the sets of state variables and values
	3.4.2 Construct the initial state predicate
	3.4.3 Construct the transform function
	3.4.4 Simplify and extend the model
	3.4.5 Analyzing the state machine model

	3.5 Model synthesis tool
	3.6 Method and tool validation
	3.7 Related work

	4 Cognitive model
	5 Adaptive agents
	5.1 Case study
	5.2 Adjusting agent interaction for different user types

	6 Future work
	7 Conclusions
	Acknowledgments
	References

