
A Fixed-Point Formulation for Recurrent Neural
Networks

Somjit Nath, Taher Jafferjee and Martha White
Department of Computing Science

University of Alberta
Edmonton, Canada

{somjit, jafferje, whitem}@ualberta.ca

Abstract

Recurrent neural networks (RNNs), along with their many variants, provide a pow-
erful tool for predicting sequential data with temporal dependencies. Two problems
concerning RNNs, however, are the ability to capture long-term dependencies and,
their long training times. There have been a variety of strategies to improve training
in RNNs, particularly by approximating an algorithm called Real-Time Recurrent
Learning. These strategies, however, can still be computationally expensive and
focus computation on computing gradients back-in-time. In this work, we show that
state in the RNN can be framed as a fixed-point problem. Using this formulation,
we provide an asynchronous fixed-point iteration update that significantly improves
run-times and stability of learning the hidden state.

1 Introduction

Neural Networks are powerful models that can give reasonably good results on a variety of machine
learning tasks. However, they have certain limitations since they work under the assumption of
independence in training and test samples. This is not the case for temporal data, in which predictions
at time t may be reliant on data from previous time-steps. To address this shortcoming, RNNs [3, 4]
were introduced to learn a hidden state update which summarizes past interaction. On each time-step,
the previous state is inputted into the neural network, in addition to the input observation for the
current time-step.

RNNs are typically trained either using Backpropagation-through-time (BPTT) [15] or approxi-
mations to an algorithm called Real-Time Recurrent Learning (RTRL) [16, 11]. The update for
BPTT is a variant of standard backpropagation, computing gradients all the way back in time; this is
problematic because the computational cost scales linearly with the number of time-steps. A much
more common alternative is truncated BPTT (T-BPTT) [17]) which only computes the gradient back
up to some maximum number of steps. Exact gradients can also be computed online by RTRL;
however it requires high computational complexity and therefore is not used in practice.

Recently, there have been some efforts towards approximating gradients for back-propagation, both
for feedforward NNs and RNNs. Synthetic gradients and BP(λ) [5] use an idea similar to returns from
reinforcement learning: they approximate gradients by bootstrapping off estimated gradients in later
layers [5, 2]. There are also several methods estimating RTRL [18]—which is itself an estimate of the
true gradient back-in-time—including NoBackTrack [9] and Unbiased Online Recurrent Optimization
(UORO) [13] which use an unbiased rank-1 approximation to the full matrix gradient. There are also
several methods that solve a fixed point problem for Recursive Backpropagation, but for a restricted
setting where convergence to a stationary state-vector is desired [1, 12, 8]. Finally, there are some
methods that use selective memory back-in-time to compute gradients for the most pertinent samples,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



using skip connections [6]. All of these methods, however, attempt to approximate the gradient
back-in-time, for the current observation and state.

We reformulate state estimation for RNNs as a fixed-point problem, enabling different optimization
strategies that do not need to compute gradients back in time. We develop an asynchronous updating
mechanism with experience replay, that takes advantage of the fixed-point formulation. This avoids
the need to compute full gradients, and avoids sweeping backwards from the current point. Instead,
we can keep a longer buffer, while only updating randomly from this buffer with one-step updates.
The one-step updates reduce the time complexity of this algorithm in comparison to RTRL and other
competitors, and at the same time allow for capturing long-term dependencies, as the updates are
from experience stored in the buffer. Further, it should avoid issues with exploding or vanishing
gradients [10], as each gradient is only for one step. We demonstrate that the algorithm is effective
on several problems with long-term dependencies, and improves over T-BPTT, particularly in terms
of the number of gradients that need to be computed per-step.

2 Formulation as a fixed point problem

A simple RNN [3] consists of a hidden-state which is dependent on its value at the previous time-step
multiplied by the recurrent weights V and the observation at the current time-step, multiplied by the
input weights U . We denote W as concatenated [V,U ]. Indeed, a defining feature of these networks
is their utilization of memory in the form of recurrent hidden state.

In this section, we formulate RNN training as a fixed-point algorithm for the hidden state for RNNs.
The key idea we present is to learn the state function s : H → Rd where H is the set of unknown
states (encoded as histories), formulated as a fixed point problem. For all h ∈ H, we want to find the
solution to the following fixed point problem

f(s(h),o(h′)) = s(h′) for all h′ such that P (h, h′) > 0 (1)
g(s(h)) = y(h)

where P : H×H → [0, 1] is the transition dynamics; y(h) is the expected target for a state h; and
f, g are (learned) functions producing next state from current state and observations, o and targets
from the state, respectively. We can also consider a slightly relaxed first condition in Eq. 1∑

h′∈H

P (h, h′)f(s(h),o(h′)) =
∑
h′∈H

P (h, h′)s(h′).

For fixed f, g, this is a standard fixed point iteration problem to obtain s(h) for all h ∈ H. But f and
g are not fixed functions: f depend on the weights W of the RNN, while g depends on the output
weights of the RNN, β. More generally, when also learning f, g, this is an iterative fixed point, where
both are being optimized jointly.

We first consider the setting where we can maintain a table of values: one state vector for each state
h ∈ H. When finding s, we will assume fixed f, g; however, we do know we will be learning these
incrementally as well and so consider parameterized functions. For RNNs, we will find such state
vectors implicitly using s(h′) = fW(s(h),o(h′)), for some parametrized function fW where we
learn the weights W. Then, each fixed point iteration step involves updating W towards the fixed
point formula, s(h′) = fW(s(h),o(h′)). Given a state s(h′) and s(h), we adjust the weights to make
fW(s(h),o(h′)) closer to s(h′) and s(h) such that gβ(s(h)) is closer to y(h). Simultaneously, we
also consistently update gβ .

In practice, of course, we cannot practically store a state vector s(h) for each h. Instead, we will find
approximations to such states, and store only a subset of their values by using a buffer which acts
like experience replay. Imagine keeping the recent N items in a buffer. On each step, you add the
transition st−1,ot,ot+1, st+1, yt to the buffer. At each training step, we can sample a transition (say
time step, T , where T > t−N ) from the buffer. The state sT can be created using fW(sT−1,oT ),
and the weights will be adjusted to make sT more useful for predicting sT+1 and yT . The W can
be updated using a gradient descent step, with a fixed β, to reduce Mean Squared Error (MSE)
between fW(fW(sT−1,oT ),oT+1), which we would call as State Loss and sT+1 and between
fW(sT−1,oT )β and yT , which can be a cross-entropy or MSE loss, which we will refer to as Target
Loss. Then, β can be updated with gradient descent to also improve prediction accuracy. Once
sT has been updated by this procedure—by updating W—then that value could be update in the
transition before it, to give a more recent sT+1 for the previous transition.

2



In this way, useful state values in later states can be propagated backwards, to make previous states
adjust to predict those states. These updates can be done n times, by sampling n transitions from the
buffer. To improve the convergence and stability of learning, we can also update the states of a few
randomly chosen transitions stored in the buffer. The entire process is presented in Algorithm 1 in
the Appendix.

The advantage of this strategy over truncated BPTT, is that we do not have to compute the entire
gradient over T time-steps. Rather, instead of sweeping all the way back, we spread value by fixed
point updates on random transitions in the buffer. This has three advantages. First, it avoids an
expensive gradient computation for each state, allowing more states to be updated, including updates
towards their targets. Second, this actually ensures that targets for older transitions are constantly
being reinforced, and spends gradient computation resources towards this goal, rather than spending
all computation on computing a more exact gradient for the recent time step. This distributes updates
better across time, and should likely also result in a more stable state. Third, the interpretation as a
fixed point iteration makes it a sound strategy—as opposed to truncation—where in the realizable
setting, W and β should eventually converge to the optimal values to satisfy (1).

3 Experimental Setup and Results

We report the performance of our Fixed Point Propagation (FPP) algorithm on 2 different tasks. Our
main goals are to (a) provide a first investigation into if FPP can learn solutions for RNNs and (b)
the sensitivity of FPP to its parameters, particularly the buffer length and number of updates n. We
include the same model trained with full-BPTT and truncated BPTT. Here, we additionally investigate
if performing one-step updates asynchronously—as in FPP—can obtain similar or better performance
than T-BPTT, with the same time complexity.

We test the algorithms in two domains with long-term dependencies: Cycleworld [14] and Sequential
MNIST [7]. p-Cycleworld is a cycle of p time-steps, where the observation is 1 in time-step p and
zero otherwise. The goal is to predict the observation bit. Sequential MNIST is pixel-by-pixel MNIST
classification, where pixels are processed consecutively and the target is to predict the label of the
image. A simple RNN is used for Cycleworld and an LSTM for Sequential MNIST. Further details
of the experiment are provided in the Appendix.

6 Cycleworld

Steps(x100)

Good 
Predictions 
in last 100 

steps

(a)

6 Cycleworld

Steps(x100)

Good 
Predictions 
in last 100 

steps

(b)

Parameter Sensitivity

Number of Updates

Accuracy
(%)

(c)

Figure 1: (a) & (b) FPP vs BPTT on 6-Cycleworld, (c) Parameter Sensitivity plot for 6-Cycleworld

In Cycleworld, we explore both the effect of the number of updates on FPP and T-BPTT, as well
as sensitivity of FPP to its buffer size, N , and number of updates, n. The main learning indicator
of the model is whether it correctly predicts when the next observation should be 1; a classification
accuracy of 83% is obtained by the naive predictor that always predicts 0. From Fig. 1 (a), it is
evident that FPP learns as fast as 6-BPTT (which can be considered as a full-BPTT since there are no
dependencies beyond 6 time-steps). Fig. 1 (b) also portrays that even though we do just one-step
updates, the network still learns to predict the correct values more often than not. Both of these
methods have similar time-complexity of O(kd2)—though FPP is less computationally intensive by
a constant factor—where d is n in the case of FPP and the truncation parameter in the case of BPTT.
Once T drops below 6, T-BPTT suffers considerably, whereas FPP remains more robust, learning
even with n = 1.

Another important parameter of this algorithm is the buffer size. As can be seen in Fig. 1 (c), there is
no clear indication as to whether higher or lower values of buffer sizes are best. Small values of buffer
size often lead to poor performance because of insufficient information stored in the state values of

3



elements of the buffer, whereas higher values of the buffer size contain transitions that are too old
and hence decrease accuracy of learning. This suggests that a promising next step is to include more
updates to the states st+1 in the buffer, to update the states in the fixed point iteration more frequently
than the parameters to f and g. Overall, however, the accuracies on y-axis of Fig. 1 (c) show that
even for a wide range of buffer sizes and number of updates performed, FPP performs reasonably
well.

Sequential MNIST

Steps (x10)

Accuracy 
(%)

Losses

Sequential MNIST

Steps (x10)

Accuracy 
(%)

Losses

Figure 2: FPP vs BPTT on Sequential MNIST

Next, we examine the properties of FPP on a more complex RNN task: Sequential MNIST. Full BPTT
is included as a baseline, to indicate near optimal performance on this task. We then consider how
well FPP and T-BPTT can perform relative to this baseline. We include a results with n = T = 10
and n = T = 15, so that FPP and T-BPTT have comparable computation per step. Fig. 2 shows
that FPP significantly outperforms T-BPTT for n = 10, and is better able to capture long term
dependencies with fewer gradient computations. Instead, by focusing the computation on computing
a 10-step gradient, 10-BPTT obtains notably worse—about 60% final accuracy as opposed to about
80%. Increasing n to 15 does not provide a significant gain, though learning is slightly faster. For
T = 15, though, T-BPTT can match performance of FPP. This suggests that n = 10 is sufficient for
FPP, and potentially to obtain further improvements a larger buffer or modifications to the updating
strategy should be investigated.

4 Conclusion and Future Work

The main objective of this paper is to formulate RNN training as a fixed point problem for the hidden
state, and investigate the properties of this optimization approach as an alternative for RNNs. In
particular, the goal is to investigate methods that can better distribute computation, and improve state
updating without having to compute expensive—and potentially unstable—gradients back-in-time
for each state. We found that our algorithm, called FPP, was indeed more robust to the number of
updates, than BPTT was to its truncation level. These initial experiments suggest that FPP could be a
promising direction, and that it warrants further investigation.

One important step is to analyze if this fixed point iteration will converge. This requires that the
iterates for Eq. 1 should be bounded, that is the function f must be a contraction, as per Banach’s
Fixed Point Theorem. The second term, g(s(h)) = y(h), should enable us to demonstrate contraction
properties for certain g, because it is the end of the recursion. However, the functions f, g are general
and such an analysis will require some investiation.

Additionally, we would like to improve on the algorithm choices in FPP, which were intentionally
initially simple for this first investigation. One important addition is to better consider what is stored
in the buffer, to reduce memory complexity and ensure important transitions are remembered. This
could include prioritizing particularly important transitions. Additionally, we plan to investigate
improvements on updating f and g, and the states in the buffer. As suggested in the text, it is possible
that the states should be updated more frequently—at a faster timescale—enabling them to become
more stable before the functions defining the fixed point iteration are changed. Overall, there are
many avenues to better understand this different approach to optimizing RNNs.

4



References
[1] L B Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial

environment. Proceedings, 1st First International Conference on Neural Networks, 1987.

[2] Wojciech Marian Czarnecki, Max Jaderberg, Simon Osindero, Oriol Vinyals, and Ko-
ray Kavukcuoglu. Understanding Synthetic Gradients and Decoupled Neural Interfaces.
arXiv:1411.4000v2 [cs.LG], 2017.

[3] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. ISSN
1551-6709. doi: 10.1207/s15516709cog1402_1. URL http://dx.doi.org/10.1207/
s15516709cog1402_1.

[4] J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. ISSN
0027-8424. URL http://www.pnas.org/content/79/8/2554.

[5] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.
In International Conference on Machine Learning, 2017.

[6] Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Laurent Charlin, Chris
Pal, and Yoshua Bengio. Sparse Attentive Backtracking: Long-Range Credit Assignment in
Recurrent Networks. arXiv:1509.01240v2, 2017.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

[8] Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel
Urtasun, and Richard S Zemel. Reviving and Improving Recurrent Back-Propagation. In
International Conference on Machine Learning, 2018.

[9] Yann Ollivier and Guillaume Charpiat. Training recurrent networks online without backtracking.
arXiv, 2015.

[10] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on International Confer-
ence on Machine Learning - Volume 28, ICML’13, pages III–1310–III–1318. JMLR.org, 2013.
URL http://dl.acm.org/citation.cfm?id=3042817.3043083.

[11] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: a survey.
IEEE Transactions on Neural Networks, 6(5):1212–1228, Sept 1995. ISSN 1045-9227. doi:
10.1109/72.410363.

[12] Fernando J Pineda. Generalization of back-propagation to recurrent neural networks. Physical
review letters, 1987.

[13] Corentin Tallec and Yann Ollivier. Unbiased Online Recurrent Optimization. arXiv:1411.4000v2
[cs.LG], 2017.

[14] Brian Tanner and Richard S. Sutton. Td(lambda) networks: Temporal-difference networks with
eligibility traces. 2005.

[15] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, Oct 1990. ISSN 0018-9219. doi: 10.1109/5.58337.

[16] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, June 1989. ISSN 0899-7667. doi:
10.1162/neco.1989.1.2.270.

[17] Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 2:490–501, 1990.

[18] Ronald J Williams and David Zipser. A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks. Neural Computation, 1989.

5

http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://www.pnas.org/content/79/8/2554
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dl.acm.org/citation.cfm?id=3042817.3043083


APPENDIX

A Algorithm

The entire algorithm for the Fixed Point Iteration is presented below.

Algorithm 1 Fixed-Point Iteration(one iteration)
procedure FORWARD-PROPAGARTION(W,β, st−1,ot,ot+1, yt)

State st = fW(st−1,ot)
Output y′t = gβ(st)
Next-State st+1 = fW(st,ot+1)
Add st−1,ot,ot+1, st+1, yt to buffer.

end procedure
procedure TRAIN(W,β)

Sample sT−1,oT ,oT+1, sT+1, yT ∼ buffer
sT = fW(sT−1,oT )
y′T = gβ(sT )
s′T+1 = fW(sT ,oT+1)
State Loss Ls = MSE(s′T+1, sT+1)
Target Loss Lt = CE(y′T , yT )
Total Loss L = Ls + Lt
Calculate ∂L

∂W & ∂Lt

∂β

Update W
Update β
sT = fW(sT−1,oT )
s′T+1 = fW(sT ,oT+1)
Replace sT+1 by s′T+1 in buffer

end procedure

B Losses

Normal RNN training minimizes the cross-entropy loss with respect to the targets. In our case, we
take each transition from the buffer, where we want the states and the weights to satisfy Eq. 1. For
this we train using a combined state and target loss as explained earlier. Instead, we can train the
parameters just using the target loss, as done in normal RNNs. However, including the state loss has
the advantage of making the states better at each update and helps to make the learning stable.

Comparison of losses (6 Cycleworld)

Steps(x100)

Good 
Predictions 
in last 100 

steps

Figure 3: Comparison of losses on 6-Cycleworld

6



C Experimental Details

The experimental details of each dataset are provided below.

C.1 CycleWorld

Network Type = simple RNN
Hidden Units = 4
Total time-steps = 300000
Optimizer = Adagrad
Learning rate = 0.1
Number of runs = 5

C.2 Sequential MNIST

Network Type = LSTM
Hidden Units = 128
Image size = 784 pixels
Input dimension = 20 pixels
Total time-steps = 5000
Optimizer = Adam
Learning rate = 0.001
Number of runs = 5

7


	Introduction
	Formulation as a fixed point problem
	Experimental Setup and Results
	Conclusion and Future Work
	Algorithm
	Losses
	Experimental Details
	CycleWorld
	Sequential MNIST


