
Rejection Sampling for Off-Policy Learning

Wesley Chung, Sina Ghiassian, Somjit Nath and Martha White
Department of Computing Science

University of Alberta
Edmonton, Canada

{wchung, ghiassia, somjit, whitem}@ualberta.ca

Abstract

Importance sampling has been the basis for most popular off-policy value function
estimation algorithms. Despite this popularity, it can suffer from high-variance and
instability issues. In this paper we investigate rejection sampling as an alternative
to importance sampling to correct off-policy temporal difference updates. For
TD(0), we show a connection between the two algorithms, indicating that both
approaches should behave similarly in the long run though rejection sampling
can save computation by rejecting some updates. We compare both algorithms
empirically in a continuing environment with multiple value functions learned in
parallel and find that rejection sampling achieves almost identical performance to
importance sampling with significantly fewer updates, confirming the theory.

1 Introduction

Off-policy learning enables an agent to learn about many (target) policies simultaneously, even though
it can only act according to a single behaviour policy. This ability is key for a continual-learning
agent, which only receives one stream of interaction. For example, the agent may want to learn about
how to reach different subgoals [15, 1]. This problem can be divided into learning different optimal
policies, off-policy. The agent might also simply want to make many policy-contingent predictions
about the future, such as in Horde [18] or Unreal [4]. To obtain each prediction, the agent needs to
learn a value function for each policy; with many policies, this can only practically be achieved using
off-policy learning.

The most common algorithms for off-policy learning combine importance sampling (IS) with temporal
difference (TD) update rules [12, 13]. Each update is multiplied by the IS ratio: the ratio between
action probabilities of the target and behaviour policies. These methods can suffer from high variance,
especially under a significant mismatch between target and behaviour [14, 7].

Rejection sampling (RS) [19] is a well-known alternative to IS for correction the sampling distribution,
but has been under-explored in reinforcement learning. There have been a few mentions of RS for
TD [17, 16, 6], though none of these works use it. RS has been used for evaluating policies using a
fixed batch of data [5, 9], where the goal is to obtain a single score for a policy rather than learn the
value function for a policy. The lack of rejection sampling algorithms for learning value functions
may be due to the fact that RS is often inferior to IS for estimating expectations [3]. RS, however, can
be more computationally efficient [11], which could be of significant benefit in a continual learning
setting. Further, different properties may arise when using RS or IS for TD, because each update
changes a set of parameters rather than a sample average, and so can influence the trajectory of
parameters.

In this paper, we investigate the use of RS as an alternative to IS for off-policy learning. We first show
how to use RS for learning value functions, as there are some subtleties in its application to TD. We
then show a connection to IS, in particular, when rescaling the step sizes by the maximum importance

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

sampling ratio for TD with IS. In fact, the rescaled IS step size is equal to the expected step size from
rejection sampling, suggesting that both algorithms should behave similarly. Empirically, we find
that rejection sampling achieves very similar performance to importance sampling in terms of error
but with much fewer updates.

2 Problem Formulation

We assume a standard Markov Decision Process framework for reinforcement learning [20], with
states S, Actions A and transitions P such that when in a (random) state St, after taking action
At+1, the agent transitions to St+1 and receives reward Rt+1 according to P (St+1, Rt+1|St, At).
We are interested in policy evaluation: estimating the state-value function V (s)—the expected
discounted sum of rewards from state s ∈ S with discount γ ∈ [0, 1]—under a fixed target policy
π : S ×A → [0, 1]. In the off-policy setting, we assume the agent chooses actions using a behaviour
policy µ : S ×A → [0, 1].

We consider the case of linear function approximation with temporal difference (TD) updates. In
linear function approximation, the true values V (s) are approximated with V̂ (s) = θTx(s) where
x(s) are the features for state s and θ is a vector of parameters. The on-policy TD(0) algorithm does
updates of the form, with stepsize αt > 0:

θt+1 = θt + αtδ(St, Rt+1, St+1)x(St) . δ(St, Rt + 1, St+1) = Rt+1 + γV̂ (St+1)− V̂ (St)

These two choice are for simplicity in this short paper; all the proposed approaches can be used with
other algorithms for learning value functions, and with nonlinear function approximation.

Our goal is to obtain unbiased samples of the TD update, even when following behaviour µ 6= π. The
above update can be interpreted as a sample from the expected TD update:

Eπ [δ(St, Rt+1, St+1)x(St)] =
∑

s,a,r,s′

dµ(s)π(a|s)P (s′, r|s, a) [δ(s, r, s′)x(s)] (1)

where dµ : S → [0, 1] is the stationary distribution over states for the behaviour policy. Typically,
unbiased estimates in off-policy learning have been obtained using importance sampling (IS), with
update ρ(At|St)δ(St, Rt+1, St+1)x(St) for IS ratio ρ(At|St) = π(At|St)

µ(At|St) . This update corrects the
action distribution, so that it is as if actions where taken according to π, because

Eµ [ρ(At|St)δ(St, Rt+1, St+1)x(St)] =
∑

s,a,r,s′

dµ(s)µ(a|s)
π(a|s)
µ(a|s)

P (s′, r|s, a) [δ(s, r, s′)x(s)]

= Eπ [δ(St, Rt+1, St+1)x(St)]

In the next section, we consider another strategy to do so: rejection sampling.

3 Rejection Sampling

Rejection sampling (RS) [19] is a well-known Monte Carlo method for sampling from a target
distribution p(y) when only having access to samples from a different proposal distribution q(y). For
a fixed L > 0, first y is sampled from q, then a uniform (0,1) random number u is sampled and finally
the sample y is rejected if p(y)

Lq(y) ≥ u, and accepted otherwise. The intuition is that q is scaled up by
L, so that it completely lies above p for all y. Then, by rejecting the right proportion of samples—all
the points between the curves p(y) and Lq(y)—the distribution of accepted samples matches the
target. The probability that RS accepts a sample is 1/L. Thus, to maximize the sample efficiency, we
want to choose L as small as possible. On the other hand, to obtain an unbiased estimate, we need L
to satisfy p(y) ≤ Lq(y), ∀y. To satisfy both criteria, a reasonable choice is L = supy p(y)/q(y). For
discrete distributions p and q, it is easy to find the minimal L.

To adapt RS to the reinforcement learning setting, we treat each observed transition (state, action,
reward, next state) as a sample from a proposal distribution and then either accept it—and do a TD
update—or reject it and do nothing. It is natural to choose a proposal and target for each state s
separately, giving p(a) = π(a|s) and q(a) = µ(a|s). However this does not provide an unbiased

2

sample with RS. Rather, we need to choose p(s, a) = dµ(s)π(s|a) and q(s, a) = dµ(s)µ(s|a).
The ratio remains the same, dµ(s)π(a|s)

dµ(s)µ(a|s) = π(a|s)
µ(a|s) ; however, the choice of L is different because

L = maxs,a
dµ(s)π(a|s)
dµ(s)µ(a|s) = maxs,a

π(a|s)
µ(a|s) . For the incorrect choice—which we call RS-local—we

would be picking a different L per state, L(s) = maxa
π(a|s)
µ(a|s) and would be implicitly obtaining a

sample of the expected update
∑
s,a,r,s′

dµ(s)
L(s) π(a|s)P (s

′, r|s, a).

Practically, to apply RS, we need to estimate L. In some cases, this information maybe known
upfront, for example if both policies are ε-greedy. Alternatively, we could estimate L online by
keeping a running maximum [2]. Note that for RS-local, L(s) is straightforward to compute and
is likely an algorithm that would be considered in practice. Though it is biased, it does correspond
to a reweighted objective that de-emphasizes states where π and µ do not match well, which could
actually be advantageous. We include it in our experiments, therefore, to assess its viability as an
alternative.

Finally, we provide a unified view of RS and IS, by scaling the TD update with a potentially random
non-negative scalar β(St, At),

θt+1 = θt + αβ(St, At)δ(St, Rt+1, St+1)x(St)

If we treat β(St, At) as a Bernoulli random variable with probability ρ(At|St)/L of being 1, we
recover rejection sampling, since β(St, At) = 0 is equivalent to rejecting a sample. If we set
β(St, At) = ρ(At|St)/L, then we get a rescaled version of TD with IS, where the step size is divided
by L. Notice that the expected value of β(St, At) for RS is identical to the fixed β(St, At) for IS,
and so RS can be seen as a sampled variant of this rescaled IS. This suggests that if the stepsize is
appropriately scaled by 1/L for IS, then both algorithms should behave similarly, with RS saving
computation by rejecting some updates.

4 Experiments

For our experiments, we set up a continuing gridworld task with multiple value functions to be learned
at once and change the behaviour policy at several points in time. This is closer to a continual learning
problem, since we want to learn about multiple policies simultaneously but can only act according to
one behaviour policy at a time. In this 11× 11 gridworld, depicted in Fig 1 a, the agent gets a reward
of +1 f it leaves certain good states and -1 for a few bad states, with no reward elsewhere. The actions
for each state are moving up, down, left or right with deterministic transitions. Making a move that
would take the agent past the boundaries of the gridworld have no effect on its position.

There are 9 different policies for which we want to learn the value function (discounted by γ = 0.9).

+1
 +1
 +1
 +1
 +1

 -1
 -1
 -1
 -1
 -1

 (a) (b)

Figure 1: (a) Rewards in the gridworld. (b) The
main actions of a clockwise policy.

Policy 0 takes actions uniformly at random in any
state. Policies 1-4 move clockwise around the grid-
world (see Fig. 1 b). The main action (moving clock-
wise) is taken with different probabilities for each
policy, starting with 0.4 for policy 1, 0.7 for policy 2,
0.85 for policy 3 and 0.97 for policy 4. The remaining
three actions are taken with equal probability. Poli-
cies 5-8 have the same probabilities as policies 1-4
but move the agent counterclockwise instead. Again,
policy 5 is closest to uniform random while policy 8
is the most focused in moving counterclockwise. For

all the policies, the states in the sixth column or row have a uniform distribution over actions.

To evaluate the agent, we initialize it to a starting state chosen uniformly at random and follow a
sequence of policies for a total of 90000 steps. We present results for two policy sequences. The
first—labelled cycle—goes through each policy in order from 0 to 9, for 2500 steps each. The
second—labelled hard—alternates between using policy 4 and 8, the most extreme policies for
2500 steps each time. The evaluation metric is the root mean-squared error (RMSE) between the
approximate value function and the true value function, averaged over all states. We compare four
different agents by considering all combinations of two settings: (a) RS vs. IS and (b) using a global
constant L (correcting for state and action distributions) vs. a local constant L (correcting only for
actions). All agents use tabular features.

3

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

IS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

RS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

RS-local
0
1
2
3
4
5
6
7
8

Figure 3: Learning curves for IS-global, RS-global and RS-local with the cycle policy sequence and tabular
features. The vertical bars are placed whenever the policy changes every 2500 steps with the colours matching
the policies being used. Both IS-local and RS-local are nearly identical to IS-global and RS-global, respectively,
and so are omitted.

Algorithm Cycle Hard
IS-global 0.128 0.363
RS-global 0.161 0.372
IS-local 0.141 0.363
RS-local 0.160 0.367

Figure 2: Root mean-squared error for
all four algorithms and the two policy
sequences averaged over all value func-
tions and timesteps.

In Figure 3, we see that the learning curves are very similar for
all settings. Table 2 indicates that there is, in fact, a slight edge
for IS compared to RS. This can be attributed to the slight up
and down dips that one can see in the IS-global plot, when the
agent has reached its asymptotic performance. The dips down
are due to the step sizes being smaller when doing off-policy
updates with IS. RS does not have this rescaling so the error
stays at the same level, no matter which policies are used. If
we focus on the asymptotic error when the behaviour and target
policies match and the additional step size β is 1 for both IS
and RS (e.g. policy 0 for steps 45000-47500), then we see that
the errors are close.

Total Median

Figure 4: Total number of updates done
by each algorithm over 90000 steps. Left:
Total sum over all 9 value functions.
Right: The median number of updates
over the 9 value functions.

For the hard policy sequence, the performance of IS and
RS are almost identical. From table 4, we find that for this
setting, RS only needs to update a fraction of the time for
this level of performance. In particular, looking at RS-global,
we see that it only performs about 130 thousand updates in
total, compared to the 810 thousand done by the IS methods.
Interestingly, even though RS-local performs a significantly
greater number of updates, the error is only slightly lower
than RS-global for both policy sequences. This is probably
due to the fact that the increased number of updates are mostly
concentrated on a subset of the states, the blue states in Fig. 1
for which the target and behaviour policy match, but TD
algorithms require updates to be done on sequences of states
to propagate the rewards properly.

5 Conclusion

Rejection sampling (RS) can be a promising alternative to importance sampling (IS). RS can give
computational benefits by doing fewer updates while maintaining almost identical performance to IS.
These benefits are more pronounced as the behaviour and target policies differ to a greater extent,
because when the IS ratio is small, RS will often reject the update whereas IS always updates, even
though the step size is substantially scaled down. In a setting where the behaviour cycled through 9
different policies, corresponding to the target policies, RS reduced the number of updates by as much
as a factor of 3. For an even more off-policy setting, where some target policies more consistently did
not match the behaviour policy, the reduction was up to a factor of 30x fewer updates.

RS has other potential benefits not yet explored in this work. For example, with RS, it may be possible
to take advantage of the fact that the updates are not weighted, as though they are being sampled on-
policy. It is possible that application of standard stepsize adaptation strategies will be more effective
for such unweighted updates. We are also currently working on extending rejection sampling to
n-step TD methods and eligibility traces. In those settings, the variance issues of importance sampling
are greatly magnified [10, 8] and we believe RS may offer a more stable alternative.

4

References
[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, O. P.

Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information Processing
Systems, pages 5048–5058, 2017.

[2] B. S. Caffo, J. G. Booth, and A. C. Davison. Empirical supremum rejection sampling. Biometrika, 89(4):
745–754, 2002.

[3] Y. Chen. Another look at rejection sampling through importance sampling. Statistics & probability letters,
72(4):277–283, 2005.

[4] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Rein-
forcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[5] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–670.
ACM, 2010.

[6] B. Liu. Algorithms for First-Order Sparse Reinforcement Learning. PhD thesis, 2016.

[7] A. R. Mahmood, H. P. van Hasselt, and R. S. Sutton. Weighted importance sampling for off-policy
learning with linear function approximation. In Advances in Neural Information Processing Systems, pages
3014–3022, 2014.

[8] A. R. Mahmood, H. Yu, and R. S. Sutton. Multi-step off-policy learning without importance sampling
ratios. arXiv preprint arXiv:1702.03006, 2017.

[9] T. Mandel, Y.-E. Liu, E. Brunskill, and Z. Popovic. Offline evaluation of online reinforcement learning
algorithms. 2016.

[10] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. Safe and efficient off-policy reinforcement
learning. In Advances in Neural Information Processing Systems, pages 1054–1062, 2016.

[11] A. B. Owen. Monte Carlo theory, methods and examples, chapter 9. 2013.

[12] D. Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty
Publication Series, page 80, 2000.

[13] D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with function approxi-
mation. 2001.

[14] D. Precup, C. Paduraru, A. Koop, R. S. Sutton, and S. P. Singh. Off-policy learning with options and
recognizers. In Advances in Neural Information Processing Systems, pages 1097–1104, 2006.

[15] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In International
Conference on Machine Learning, pages 1312–1320, 2015.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[17] R. S. Sutton, H. R. Maei, and C. Szepesvári. A convergent o(n) temporal-difference algorithm for off-
policy learning with linear function approximation. In Advances in neural information processing systems,
pages 1609–1616, 2009.

[18] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A scalable
real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768.
International Foundation for Autonomous Agents and Multiagent Systems, 2011.

[19] J. von Neumann. Various techniques used in connection with random digits. In Monte Carlo Method,
pages 36–38. National Bureau of Standards Applied Mathematics Series, 12, 1951.

[20] M. White. Unifying task specification in reinforcement learning. arXiv preprint arXiv:1609.01995, 2016.

5

A Other Experiments

Here we include the learning curves for the algorithm settings omitted from the main paper.

Cycle policy sequence (some figures duplicated from main paper for ease of comparison)

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

IS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

RS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

IS-local
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

RS-local
0
1
2
3
4
5
6
7
8

Hard policy sequence

0 22500 45000 67500 90000
Number of steps

0.2

0.4

0.6

0.8

1.0

RM
SE

IS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.2

0.4

0.6

0.8

1.0

RM
SE

RS-global
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.2

0.4

0.6

0.8

1.0

RM
SE

IS-local
0
1
2
3
4
5
6
7
8

0 22500 45000 67500 90000
Number of steps

0.2

0.4

0.6

0.8

1.0

RM
SE

RS-local
0
1
2
3
4
5
6
7
8

6

A.1 Step size sensitivity

Here, we include plots of the average RMSE over all steps and all value functions for different step
sizes. We find that the curves for importance sampling and rejection sampling are similar.

Cycle policy sequence

Hard policy sequence

7

	Introduction
	Problem Formulation
	Rejection Sampling
	Experiments
	Conclusion
	Other Experiments
	Step size sensitivity

