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Abstract

Deep neural networks are known to suffer the catastrophic forgetting problem. In
this work, we present a simple yet surprisingly effective way of preventing catas-
trophic forgetting. Our method, called Few-shot Self Reminder (FSR), regularizes
the neural net from changing its learned behavior by performing logit matching
on selected samples kept in episodic memory from the old tasks. Surprisingly,
this simplistic approach only requires to retrain a very small amount of data in
order to outperform previous methods in knowledge retention. We demonstrate the
superiority of our method to the previous ones on popular benchmarks as well as a
new continual learning problem where tasks are designed to be more dissimilar.

1 Introduction

Neural networks suffer from catastrophic forgetting, a phenomenon in sequential learning of multiple
tasks whereby previous knowledge is lost by mistake when new tasks are learned [[12} 11} 3]. When
the tasks are learned sequentially, optimization in later stage could adapt the shared parameters and
representations in ways that harm the old tasks. This failure hampers the application of deep models
since it indicates that they are incapable of maintaining knowledge when facing new environments.

Many different ways to address this problem have been explored in the literature. While the methods
that store all the previous data face the resource challenge in practice, alternative methods that
instead store models have been proposed in the literature [6} 17,110, 8} 116, 4]. For example, Elastic
Weight Consolidation (EWC) [6] stores the previous model to penalizes the model parameter changes
according to the different sensitivities. Shin et al. [15] replaces the storage of the previous data by
training GAN’s to generate fake historical data. Besides the complications of these methods, which
usually leads to an exhausted hyper-paramter tuning, such approaches also need to pay significant
cost for storing a reasonably ‘good’ model, given the size of the current state-of-the-art networks.
Thus, such methods may not necessarily save its storage cost, especially when saving a small subset
of “anchor” points from the historical data is sufficient for this problem, as we will show later.

In this work, we embrace simplicity and show that it is possible to address catastrophic forgetting by
storing and reusing very few previous data without incurring significant memory cost. We propose
Few-shot Self Reminder (FSR), which directly places the regularization on the function mapping
instead of its parameters. It does so with a very small episodic memory of previous data and their
corresponding logits. This idea is adopted from the model compression community [2} 1} 5], but used
in a very different manner. FSR is frustratingly simple, but surprisingly effective in practice.

1.1 Related Work

The most related methods to FSR in the literature are Learning without Forgetting (LwF) [9] and
iCaRL [14], which also use distillation to prevent catastrophic forgetting. In particular, LwF matches
the predicted labels of previous models on the current data, which requires to store all the previous
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models. Its performance also drop sharply when the input distribution changes significantly across
tasks. iCaRL focuses on class-incremental learning and matches independent logistics in the outputs
for representation learning, which differs from their classifier objective. The different logits of
independent logistics are not jointly calibrated, so they do not contain as rich information as logits of
softmax classifiers, and behaves qualitatively different from FSR in practice.

2 Few-Shot Self Reminder

We focus on the continual learning setting, in which the learner will encounter a sequence of datasets
D1,Ds,-- -, one at a time. The goal is to attain a model f7 : X — ) that performs well on the first
T datasets after sequentially trained on them, where &’ is the input space and ) is the probability
simplex. We assume the value of 7" is not known in advance so we would like to have a good model fr
for any T during the sequential training. This learning problem is challenging in that, if f7 is simply
trained on the current dataset D, it will forget how to properly predict for datasets Dy, ¢t < T, the so-

called catastrophic forgetting problem. Denote the total loss by L(™) (f) = 23:1 Ep, [L(f(X),Y)],

where (X,Y) is the random data pair in dataset D; and let fr &f argmin ; L) (f). For simplicity,
we denote Ep, [L (f(X),Y)] by Lp,(f). The constraint is that we won’t be able to access all the
data from the previous tasks, but a limited amount of information stored in episodic memory.

Unlike EWC constraining the model parameters of fr, our method FSR focuses on its function
mapping. When learning a new task, our method carries over a small amount of information to
“remind” the learner about the knowledge from the previous tasks. Noting that

T—-1 T—-1
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where Ap, (f, ft) = Lp, (f) — Lp, (ft) measures the difference in the performances of f and f; on
D;. Therefore, learning fr requires minimizing Lp,. (f) + Zf:_ll Ap, (f, ft).

It remains to decide what information from D; is important for f to achieve a small Ap, (f, fi),
given a limited amount of memory. One approach would be to pass a small number of samples
D, = {(z §t),yj )) |j =1,---,m} from D, (or the predicted labels), thus >, Ap, (f, f¢) can be
replaced by >, A B, (f, ft). However, such approach depends heavily on that a single label can
represent the structured output of f;, which is unrealistic in general. In order to pass the information
of the structured output to fully reproduce the predicting behavior of a model, we propose to the
following “self-distillation” method on the logits:

T—-1 m

min - ZL CRNURED 9) S FEF L

tl]l

A

where z;, z; are the logits of the memory data x; produced by f and f; respectively.

Intuitively, the selected points D, should be representative and provide as much constraint as possible
to change in f. Surprisingly, it turns out that class-stratified random sampling already works
exceptionally well in our experiments, and other more sophisticated methods do not consistent
outperform it with a significant margin. We also test out an efficient parameter-gradient based
estimation method. The intuition is that representative points are both easier to learn (comparing to
“corner cases”) and occur more frequently in the training set. Hence as the initial transient phase of
learning epochs, representative points should contribute less model parameter gradient on average.
At later iterations, the norm of the gradients is equally assigned to all the points in the batch as their
additive scores. After training one task, the points with the lowest scores are selected. Empirically,
this method outperforms stratified random sampling, but not always with a significant margin.

3 Experiments

In this section, we empirically demonstrate that our proposed approach forgets much slower than
popular alternatives and that it can handle highly dissimilar tasks. As FSR performs logit matching, it
is labeled as Logit. We also test a variant with knowledge distillation [5] (labeled as Distill) using
cross-entropy on softmax probabilities. The baselines are vanilla SGD, LwF [9], iCaRL [14] and
EWC [6]. SGD is a naive baseline used to showcase performance of EWC in Kirkpatrick et al. [6]]



so we include it as comparison. LwF and iCaRL share some similarity to our method, but have
important distinctions as outlined in previous sections. The regularization parameter of each method
is individually tuned with a large range of candidates, based on a hold-out validation partition. Except
SGD, all other methods are trained using the Adam with step size of 0.0001. We test our method on
two different benchmark problems designed based on MNIST. Each setting has 20 tasks in total.

Permuted MNIST The first setting is the permuted MNIST problem [7], a popular benchmark for
continual learning [6, 17, [10]. For each task, a fixed random permutation is applied to all inputs. As
pixel permutation is a linear transformation, the resulting tasks are relatively similar to each other.

Nonlinearly Transformed MNIST To compare how the methods handle more dissimilar tasks,
we further design a nonlinearly transformed MNIST benchmark. In this problem, a fixed random
nonlinear (but invertible) transformation (a four-layer MLP with random orthogonal weights) is
applied to all the images. All layers have 784 units with LeakyReLU (a = 0.2) activation. Each task
corresponds to a different random nonlinear transformation. The invertible transformations lose no
information, so each task is still equally solvable by a permutation invariant model like MLP.

Our FSR can trade-off between the memory usage and knowledge retention. In the rest of the paper
we will first demonstrate how FSR can forget slower than existing methods when using comparable
memory, followed by several surprising results when applying FSR with very small memories.
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Figure 1: Permuted MNIST test accuracy Figure 2: Non-linear MNIST test accuracy

3.1 Little Forgetting

Permuted MNIST We randomly select 500 class-balanced MNIST images per task as memory for
FSR, which in total is comparable to the memory cost of EWC on the same model.

Figure [Ta] shows the test accuracy of the first task along with the training of 20 sequential tasks,
while Figure |1b| shows the average test accuracy of tasks thus far. We can see that all methods
except LWF outperform SGD with a large margin. LWF performs poorly in this problem due to two
possible factors: (1) noticeable distribution changes in the input space, as also pointed out by other
researchers [[13] and (2) the fact that the two losses based on ground truth label and distilled label
from previous task are in fact conflict with each other. It is difficult for a single model to predict both
labels given the same image. Another observation from Fig. [I]is that, logit matching, distillation, and
iCaRL have a significant improvement over EWC when using comparable memory size.

Nonlinearly Transformed MNIST We then test on the a more challenging problem of nonlinearly
transformed MNIST, where tasks are less similar. The results are shown in Figure@ As we anticipated,
when data distributions are much different from task to task, approaches that match model parameters
like EWC can fail miserably. Essentially, EWC only utilizes local information as the diagonal Fisher
matrix. When the optimal solutions of two tasks are far apart, the local information of the first task
is no longer accurate during the training process of the second task, and there might not be overlap
for the two estimated Gaussian ellipsoids. On the contrary, methods that solely match the outputs of
previous models like FSR can still maintain a remarkably better performance than EWC.

3.2 Little Memory

To further examine the effectiveness of FSR, we test our method with small memory. FSR can surpris-
ingly do well in the extreme setting of retaining only a few images. We focus on the permuted MNIST
setting and show the effect of different memory sizes in Figure[3] There are a few observations.

First, Adam-optimized models tend to forget more quickly than those optimized by vanilla SGD. It
may be explained by the fact that adaptive optimizers usually find local optimum of the new task
quicker than SGD, hence moving away from previous solutions more quickly. Second, strikingly,



even with only 1 image per class (a memory size of 10 images per task), logit matching can improved
over SGD by a significant margin. Recall that we match logits with the Adam optimizer, which
means that even with only 1 image per class can remedy the forgetting issue of Adam. Third, with 10
images per class (thus 100 images per task), logit matching can outperform EWC for this problem. It
is surprising that logit matching can perform so well with only 20% of the memory cost of EWC.
Fourth, as shown in Figure[3] logit matching consistently performs better than distillation and iCaRL,
across all memory sizes. Their accuracy differences are more significant with smaller memories.
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Figure 3: Permuted MNIST average task test accuracy with different memory sizes (mean and
standard error over 5 repetitions). Solid lines are using full memory. Dashed and dotted lines are with
partial memory. The numbers in the legend indicate the numbers of examples per class per taskﬂ

4 Conclusion

To overcome the catastrophic forgetting problem in continual learning of deep neural networks, we
proposed Few-shot Self Reminder (FSR) that requires substantially smaller memory yet forgets slower
than popular alternatives. As a side contribution, we also introduced a new benchmark, nonlinearly
transformed MNIST, that is significantly harder with more substantial between-task dissimilarities.
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