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Abstract

Lifelong machine learning has been a long-standing challenge for the machine
learning community. Recent research defined core properties of lifelong machine
learning systems, including the ability to perform continuous learning for these
systems to become more knowledgeable over time. Measuring if such systems are
increasingly knowledgeable is challenging since performance metrics for single
task learners may be insufficient or misleading. We introduce Cumulative Gain
of a Lifelong Learner, a metric to determine gain in performance for systems that
learn supervised tasks sequentially. This gain can be achieved by learning new
tasks better, by refining existing knowledge of previous tasks or by satisfying
both of these properties. The proposed metric is agnostic to the lifelong learner.
We evaluate our metric experimentally in large-scale synthetic datasets for binary
classification tasks and real-world datasets of varied number of classes, using our
own lifelong learner and counterparts.

1 Introduction

Learning in the long-term is a long-standing concern in machine learning. Lifelong machine learning
has revived interest in systems that learn a sequence of related tasks [1]. These systems should:
1) learn new tasks better, exploiting existing knowledge; 2) store knowledge incrementally in a
knowledge base; 3) perform continuous learning. Research in transfer, hypothesis transfer, multitask,
meta and deep learning explored the first property [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23]. Research in lifelong learning and related areas have studied the second [1].
The last property, which should ideally include refinement of knowledge, has been explored only
recently [24, 25]. Some work has recently focused on the challenge of learning new tasks whilst
preventing catasthropic forgetting of old tasks [26]. The exploration of the problem of learning
continuously whilst refining knowledge has been rather limited. Measuring if supervised lifelong
learning systems are becoming more knowledgeable has been even less explored, and to the best of
our knowledge only one test has been formulated to date [27].

In this paper we introduce CGLL, a simple metric for measuring improvement on the performance
of supervised lifelong learning systems. We accompany this metric with a test to determine if a
lifelong learner can be categorised as a continuous learner that encourages a system to become
more knowledgeable over time as it observes more tasks. We evaluate our metric on two synthetic
datasets developed specifically for binary classification tasks in lifelong learning, and three real-
world datasets of different number of classes, using existing lifelong learners and our own method.
Section 2 introduces the metric. Section 3 briefly introduces our lifelong learner. Section 4 presents
experimental results. Finally, Section 5 concludes and identifies future directions.

Preprint. Work in progress.



2 CGLL: A General Metric for Supervised Lifelong Learning

Chen and Liu (2016) defined the ability to perform continuous learning as one of the core properties
of lifelong machine learning systems. Learning continuously should ideally encourage the system
to become more knowledgeable. Therefore, a lifelong learning system should demonstrate better
performance over time. Measuring this performance is however a challenge since common metrics
have been originally designed for learning settings where tasks are executed in isolation.

Li and Yang (2015) proposed a lifelong machine learning test to determine if an agent could be
categorised as a lifelong learner. A learning agent A would pass the lifelong machine learning test
depending on two conditions: 1) if its macroaveraging (mean) accuracy is better than a base learner
B that learns these tasks separately, at every timestamp t during a sequence of tasks, and 2) the
difference in the macroaveraging accuracy obtained by these two learners becomes larger and larger
over time. The test was formally defined as [27]:

∀t :

{
MA(A(t)) > MA(B(t))

∇MA(A(t)) > ∇MA(B(t))
(1)

where ∇MA(t) = MA(t) −MA(t−1) and MA(t) =
∑T

t=1 1/n(t)
∑n(t)

i=1 P (yti , ft(x
t
i)), with T the

number of tasks learned, n the number of examples of all tasks and P a performance metric such as
accuracy1. Note that multiple lifelong learning agents could be compared indirectly by comparing to
the base learner B.

Inspired by this metric, we propose Cumulative Gain of a Lifelong Learner (CGLL) as an alternative
simple metric to determine the cumulative gain in performance achieved by a lifelong learner.
Intuitively, a lifelong learning system that is becoming more knowledgeable should demonstrate a
larger gain over time. For a sufficiently large number of tasks that are all equally relevant for the
learning system, the system should denote increasing performance if it is sufficiently good at learning
new tasks as well as at refining existing knowledge of previous tasks. This can be potentially achieved
if such system denotes two of the characteristics identified by Chen and Liu (2016): 1) learning new
tasks better and 2) performing continuous learning whilst refining knowledge of existing tasks.

We define the cumulative gain achieved by a lifelong learning system that satisfies these characteristics
as:

CG(LL)t = CG(LL)(t−1) +
1

Tt

Tt∑
i=1

P (ysi, f
t
si)− P (ysi, f

(t−1)
si ) (2)

Figure 1: Two lifelong learners with increas-
ing gain in performance.

with CG(LL)0 = 0. The cumulative gain CG of
a lifelong learner LL at a timestamp t depends on
the cumulative gain of that learner at the previous
timestamp (t− 1) and the aggregation of differences
in performance for a set of functions or hypotheses
fs ∈ S at these timestamps, measured using a per-
formance metric P such as accuracy. Similarly to Li
and Yang (2015), we propose a test to determine if a
lifelong learner can be categorised as a learner that
is becoming more knowledgeable. Our test is defined
as:

∀t :

{
if t > 0 CG(LL)(t) ≥ CG(LL)(t−1)

if t = 0 CG(LL)(t) = 0
(3)

i.e. at any time t the cumulative gain of the performance of the system should be at least equal to
the previous cumulative gain, i.e. CG(LL) is at least monotonically increasing. Figure 1 shows
two examples of lifelong learners that would be categorised as learners that encourage increasing
performance over time. Note that the test assumes that all the tasks are equally important. For tasks
of similar performance, it will also tend to be more stable over time (dark blue line in Figure 1).

1Though the original formulation by Li and Yang (2015) referred to a loss function L, the formulation
actually was meant to use a performance metric such as P .
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3 HRSVM: A Lifelong Learner based on SVM

In our lifelong learning setting, a sequence of target T tasks is to be learned. At each timestamp t,
the system executes a task Tt to learn a target function ft using a set of labeled training examples
Dt = {(x1, y1), . . . , (xn, yn)}. A lifelong learning system accumulates knowledge extracted on
these tasks as a set S = {fs1, . . . , fst} of source hypotheses. We encourage transfer forward to learn
a target ft and transfer backward to refine existing fs ∈ S as follows.

Transferring Forward. A subset F ⊆ S of source hypotheses is used to aid learning of Tt by
transferring selected knowledge forward [17]. This subset is selected based on the relatedness of
each fs ∈ S and Dt, measured using Kullback-Leibler divergence. Related source support vectors
xsi ∈ fs ∈ F, 1 ≤ i ≤ l, are later identified for each target example xi, 1 ≤ i ≤ n. Coefficients
αsi ∈ fs ∈ F are transferred and used to upper-bound coefficients for the corresponding target
examples. As a result, training examples which are more closely resembled by source support vectors
xsi get more importance while learning ft, and contribute more to the objective to optimize. The
learning problem in Tt is approached through an SVM dual objective [28], with a modified constraint:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

s.t.

n∑
i=1

yiαi = 0, ∀i 0 ≤ αi ≤ C + ci, ci =
|F |
|S|

s∑
k=1

αk

(4)

A coefficient αi for ft is upper-bounded by the constraint C + ci, composed of the original upper-
bound C and ci, an aggregation of α = {α1, . . . , αs} coefficients transferred from s source support
vectors xs ∈ fs ∈ F . A factor that accounts for the number of fs contributing to the target task,
|F |/|S|, is also considered. Details can be found in our previous paper [17].

As a result of this transfer process, tuples can be identified that match source support vectors
(xs, ys, αs) with target support vectors (xt, yt, αt) learned for ft, which were involved in transfer.
A tuple is represented as Z = {(xs, ys, αs), (xt, yt, αt)}. These tuples contain insights on the
knowledge shared by fs and ft. Therefore, exploiting these pairs could be potentially useful for a
learning system that aims to refine existing fs using knowledge collected on the recent task Tt. The
next section explains a method to exploit this knowledge.

Transferring Backward. We approach the problem of refining an existing fs by maximising an
SVM dual function that includes an additional term to represent subspaces of shared knowledge
between an existing fs and a target ft learned recently. This modification allows to optimize for
the space of support vectors in fs and the space of support vectors in fs and ft simultaneously. We
propose a formulation that pursues refinement whilst encouraging retention of existing knowledge.
The latter is a relevant characteristic for lifelong learning systems to remain in the long-term [29].
Our formulation is based on ν-SVM [30, 31], an SVM variant that considers a parameter ν to control
the influence of training examples. Originally, this parameter limits both the degree of compression
of an SVM hypothesis, acting as a lower bound on the number of support vectors, and the training
error, acting as an upper bound on the number of margin errors. In our method, refinement of an
fs is controlled by controlling training error, whilst retention of knowledge in fs is controlled by
controlling compression. We formulate the hypothesis refinement problem with retention as2:

max
α

F (α) = −1

2

[
(1− Γ)

l∑
i,j=1

αiαjyiyjK(xi, xj) + Γ

l,2o∑
i,k=1

αiyiαkK(xk, xi)

]

s.t.

l∑
i=1

yiαi = 0,

l∑
i=1

αi ≥ ν, ∀i 0 ≤ αi ≤ 1/l

(5)

The first term in brackets optimizes on the space of the current xs ∈ fs. The second term optimizes on
the shared space of the source fs and the target ft hypotheses. Here, αk and xk, with 1 ≤ k ≤ 2o, are
extracted from o functions learned with one-class SVM [32]. Each of these functions uses elements
from one tuple Z = {(xs, ys, αs), (xt, yt, αt)}, as training examples. In binary classification tasks
Z = {(xs, ys, αs), (xt, yt, αt)} are conformed such that ys = 1 and yt = 1, or ys = −1 and
yt = −1, to encourage transfer between corresponding classes. A parameter Γ, set generally small,
controls the contribution of the last term.

2Details of this method are currently under review in another venue.
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Figure 2: Lifelong learning test [27] and a new test to measure cumulative gain achieved by lifelong
learning systems, evaluated on two synthetic and three real-world datasets. Error bars denote 95% c.i.
t0 denotes performance after half of the tasks have been learned. Note that, while for HRSVM t0 is
the initial knowledge base without transfer, for ELLA, CL and DEN t0 some transfer/refinement may
have already occurred since half of the tasks have been learned sequentially using these methods.

4 Experimental Evaluation

We experiment with synthetic and real-world datasets. We explore two kinds of synthetic problems:
hyperplanes and RBF concepts. We generate these datasets as described in the supplementary material.
For real-world datasets, we explore 20 newsgroups, CIFAR-100 and ImageNet. The experimental
setting for HRSVM, ELLA, CL and DEN is described in the supplementary material.

Figure 2 (left for each dataset) shows the existing lifelong learning test [27] applied using HRSVM,
ELLA, CL and DEN3. BL is an SVM base learner that learns tasks separately. For synthetic
hyperplane, this learner is trained with a linear kernel. For synthetic RBF this is trained with an RBF
kernel and γ = 0.1. For 20 newsgroups, CIFAR and ImageNet this learner is trained with an RBF
kernel and γ = 1/d, with d the number of features. In all cases, C = 1. We can observe that HRSVM
achieves increasing performance over time with an increasing gap with respect to the base learner
BL, for synthetic hyperplane and synthetic RBF. Methods such as ELLA, and DEN find it difficult to
achieve increasing performance, whilst their gap with respect to BL remains almost constant over
time. CL is volatile over time. For real-world datasets some gap can be achieved also using HRSVM,
compared to other methods that seem more unstable.

Figure 2 (right for each dataset) shows the proposed CGLL metric on HRSVM, ELLA, CL and
DEN. For proper visualization, we normalize the cumulative gain over all methods using min-max
normalization, with the minimum set to 0. Therefore, in practice the gain of each method is also
relative to its counterparts. Similarly to the previous test, for synthetic hyperplane and synthetic RBF
we observe that HRSVM, which aims to refine existing knowledge while learning new tasks, can
effectively encourage increasing gain. This is an indication of a learning system that is becoming
more knowledgeable. ELLA, CL and DEN find it difficult to pass this test on these datasets. For
real-world datasets some gain can be achieved also using HRSVM, compared to other methods that
seem more unstable according to this metric.

5 Conclusion and Future Work

We have proposed a general metric to determine if a lifelong learning system is becoming more
knowledgeable. As future work we propose to analyse theoretical properties of this metric and
extended scenarios such as systems composed of tasks inherently different in terms of performance,
or systems for which some tasks are more relevant than others.

3After extensive experimentation with a variety of parameters we confirmed that for a large number of tasks
the performance of DEN remains around 50%. Therefore, for synthetic hyperplane, synthetic RBF and ImageNet
we only run up to 100 tasks using this method. We show extended results for proper visualization.
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Supplementary Material

In this section we explain the synthetic datasets used in our experiments, and the detailed experimental
setup for these and the real-world datasets.

We propose a synthetic hyperplane dataset for binary classification tasks received sequentially. This
dataset is especially useful to explore the proposed metric experimentally, since the corresponding
tasks are expected to perform similarly. In our dataset, each of these tasks is about learning a linear
boundary separating examples from two classes. To generate each of these problems, we use an
existing method that generates isotropic Gaussian blobs for clustering4. This method first generates c
random centers in d dimensions. Then, examples within 1 standard deviation of these centers are
generated randomly. We generate 500 problems using the described procedure. We set c to 2 for
binary tasks. For results presented in Section 4, we set d to 100. We generate 1, 000 of these examples.
We also scale the data to the range [0, 1]. To make each task subject to transfer and refinement, we
repeatedly extract 10% of the corresponding examples as training data, and 30% as test data. Each
extraction is performed without replacement. We repeat this procedure 30 times such that we have 30
different samples to test on each problem. We also add 40% noise to the training sets by shuffling
labels.

The second synthetic dataset is composed of RBF concepts, as an implementation of an existing
method [33]. We generate 100 centroids, defined by a random center of 100 features in the range
[0, 1], and a standard deviation in the same range. We then generate 1, 000 random examples for each
RBF concept. We repeatedly extract training (10%) and test samples (30%) without replacement for
each class, 30 times, and compose balanced binary classification problems of each RBF concept vs.
rest. We add 40% noise by shuffling training labels.

For real-world experiments, we work with 20newsgroups [34], CIFAR-100 [35], and an ImageNet
subset of 500 classes [36]5. We use the same approach as for RBF problems to sample training and
test sets, and to compose binary classification tasks, 30 times.

In our lifelong learning setting, for the synthetic hyperplane dataset we learn the 500 tasks described
previously. For our lifelong learner (HRSVM), we first compose an initial knowledge base of 250
tasks. These tasks are learned using an SVM with a linear kernel and C = 1. Then we learn the other
250 tasks sequentially. Our transfer forward method requires a threshold on the Kullback-Leibler
divergence (KL), which we set to 0.3, and a threshold on the number of nearest-neighbours for
transfer (nn), which we set to 2. For transferring backward, we set the parameter Γ in Eq. 5 to
0.01 and ν to the maximal feasible value, ν = 2 ∗ min(l+, l−)/l [31]. For ELLA [24], we set
the percentage of latent components as 0.25 of the number of features, after grid-search on the set
{0.05, 0.10, 0.15, 0.20, 0.25} using a 5% validation set. We select the value of 1 for the sparsity level,
after searching on the values {0.05, 0.1, 0.2, 0.5, 0.8, 1}. For CL [25], we set the similarity threshold
to 0.15 after grid-search over the values {0.10, 0.15, 0.20, 0.25, 0.30} on a 5% validation set. Finally,
for DEN [26] we learn a simple feedforward network with parameters: two hidden layers of 200 and
300 neurons, epoch of 500, batch size of 500, learning rate of 0.001, sparsity for L1 of 0.0001, L2
lambda of 0.0001, group Lasso lambda of 0.001, regularization lambda of 0.5, threshold for dynamic
expansion of 0.01, threshold for split and duplication of 0.05 and number of units of expansion of 10,
given the large number of tasks. The order of tasks is randomized on each repetition.

The HRSVM setting is similar for the other four datasets: we first learn a target hypothesis by
optimizing Eq. 4, and the existing hypotheses are refined by optimizing Eq. 5. A preliminary
step trains half of the hypotheses as initial sources. Initial hypotheses for all datasets are trained
using an SVM, with C = 1. Synthetic RBF tasks are trained with an RBF kernel and γ = 0.1 to
make it subject to refinement. 20newsgroups, CIFAR and ImageNet tasks are trained with RBF
kernels and γ = 1/d, with d the number of features. Parameters for learning target hypotheses are
as follows: for synthetic RBF KL = 0.45, for 20newsgroups KL = 0.5, for CIFAR-100 and for
ImageNet KL = 0.3. In all cases, the number of nearest neighbours, nn, is set to 2. Hypothesis
refinement is performed with the modified ν-SVM in Eq. 5 with the same SVM parameters as their
corresponding initial sources, ν equals to the maximal feasible value and Γ = 0.01 in all cases.
The order of the tasks is randomized for each of the 30 repetitions on each dataset. For ELLA,

4http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html
5http://image-net.org/download-features, for 500 classes selected randomly from http://

image-net.org/api/text/imagenet.sbow.obtain_synset_wordlist
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we tune the number of latent components using grid-search on a 5% validation set, with values
in {0.05, 0.10, 0.15, 0.20, 0.25}, as a percentage of the total number of features. For the sparsity
level, we select the optimal value from {0.05, 0.1, 0.2, 0.5, 0.8, 1}. Best values for the percentage
of latent components are as follows: synthetic RBF 0.25, 20newsgroups 0.10, CIFAR-100 0.25,
ImageNet 0.20. For all datasets, sparsity level is 1. For datasets of more than 200 features, 200
features are first extracted using PCA6. For CL we tune the similarity threshold using grid-search on
a 5% validation set, with values in {0.10, 0.15, 0.20, 0.25, 0.30}. Best values for each dataset are as
follows: synthetic RBF 0.15, 20newsgroups 0.20, CIFAR-100 0.20, ImageNet 0.20. The order of
tasks is also randomized for both ELLA and CL. Finally, for DEN we use the following setting: for
synthetic RBF we use a network with two hidden layers of 250 and 200 neurons. For ImageNet we
use a network with two hidden layers of 500 and 250 neurons. For 20newsgroups we use two hidden
layers of 500 and 250 neurons. For CIFAR-100 we use a network with two hidden layers of 1, 500
and 500 neurons. For the other parameters we use the default values, for all datasets: maximum
number of iterations of 5, 000, batch size of 500, learning rate of 0.001, L1 sparsity of 0.0001, L2
lambda of 0.0001, group Lasso lambda of 0.001, regularization lambda of 0.5, threshold for dynamic
expansion of 0.1, threshold for split and duplication of 0.5. For the number of units of expansion, we
use the default value of 10.

6Implementation of ELLA allows up to 200 features.
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