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Abstract

Previous works on sequential learning address the problem of forgetting in dis-
criminative models. In this paper1 we consider the case of generative models.
In particular, we investigate generative adversarial networks (GANs) in the task
of learning new categories in a sequential fashion. We first show that sequential
fine tuning renders the network unable to properly generate images from previous
categories (i.e. forgetting). Addressing this problem, we propose Memory Replay
GANs (MeRGANs), a conditional GAN framework that integrates a memory replay
generator. We study two methods to prevent forgetting by leveraging these replays,
namely joint training with replay and replay alignment. Experimental results show
that MeRGANs can generate competitive images while significantly mitigating the
forgetting of previous categories.

1 Introduction

Generative adversarial networks (GANs) [3, 14, 5, 1, 4, 11] are a popular framework for image
generation due to their capability to learn a mapping between a low-dimension latent space and a
complex distribution of interest, such as natural images. The approach is based on an adversarial game
between a generator that tries to generate good images and a discriminator that tries to discriminate
between real training samples and generated.

As most machine learning problems, image generation models have been studied in the conventional
setting that assumes all training data is available at training time. This assumption can be unrealistic
in practice, and modern neural networks face scenarios where tasks and data are not known in
advance, requiring to continuously update their models upon the arrival of new data or new tasks.
Unfortunately, neural networks suffer from severe degradation when they are updated in a sequential
manner without revisiting data from previous tasks (known as catastrophic forgetting [12]).

While previous works study forgetting in discriminative tasks[2, 9, 8, 15, 10, 17, 6], in this paper we
focus on forgetting in generative models (GANs in particular) through the problem of generating
images when categories are presented sequentially as disjoint tasks. The closest related work is
[16], that adapts elastic weight consolidation (EWC) [2] to GANs. In contrast, our method relies
on memory replay and we describe two approaches to prevent forgetting by joint retraining and by
aligning replays. The former includes replayed samples in the training process, while the latter forces
to synchronize the replays of the current generator with those generated by an auxiliary generator (a
snapshot taken before starting to learn the new task). An advantage of studying forgetting in image
generation is that the dynamics of forgetting and consolidation can be observed visually through the
generated images themselves.
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1A longer version of this work has been accepted in NIPS 2018 (main conference).



2 Memory replay generative adversarial networks

Rather than regularizing the parameters to prevent forgetting, we propose that the generator has an
active role by replaying memories of previous tasks (via generative sampling), and using them during
the training of current task to prevent forgetting. Our framework is extended with a replay generator,
and we describe two different methods to leverage memory replays.

This replay mechanism has been used to prevent forgetting in classifiers [6, 17], but to our knowledge
has not been used to prevent forgetting in image generation. Note also that image generation is a
generative task and typically more complex than classification.

2.1 Joint retraining with replayed samples

Our first method (see Fig. 1a) create an extended datasetthat contains both real training data for the
current tasks and generate samples from previous tasks (i.e. memory replays). Once the extended
dataset is created, the network is trained in a multi-task setting to both discriminate real and generated
samples and to classify correct class labels (as in AC-GAN[13]).

This method could be related to the deep generative replay in [17], where the authors use an
unconditional GAN and the category is predicted with a classifier. In contrast, we use a conditional
GAN where the category is an input, allowing us finer control of the replay process, with more
reliable sampling of image and conditional label pairs since we avoid potential classification errors
and biased sampling towards recent categories.
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Figure 1: Memory Replay GANs (for a given current task t = 3).

2.2 Replay alignment

We benefit from the fact that current generator and replay generator share the same architecture,
inputs and outputs. Their condition spaces (i.e. categories), and, critically, their latent and parameter
spaces are also initially aligned, since the current generator is initialized with the same parameters
of the replay generator. Therefore, we can synchronize both the replay generator and current one
to generate the same image by the same category and latent vector as inputs (see Fig. 1b). In these
conditions, the generated images should also be aligned pixelwise, so we can include a suitable
pixelwise loss to prevent forgetting (we use L2 loss). In contrast to the previous method, in this case
the discriminator is only trained with images of the current task, and there is no classification task.

3 Experimental results

3.1 MNIST digits generation

We first consider the digit generation problem in the standard digit datasets MNIST[7]. Learning to
generate a digit category is considered as a separate task (from 0 to 9).

The architecture used in the experiments is based on the combination of AC-GAN [13] and Wasser-
stein loss [4]. We evaluated our two approaches: joint training with replay (MeRGAN-JTR) and replay
alignment (MeRGAN-RA) and compared with joint training (JT) with all data (i.e. non-sequential
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SFT EWC DGR MeRGAN-JTR MeRGAN-RA JT

Figure 2: Images generated for MNIST after learning the ten tasks. Rows are different conditions (i.e.
categories), and columns are different latent vectors.

Baselines Others MeRGAN
JT SFT EWC DGR JTR RA

5 tasks (0-4)
97.66 19.87 70.62 90.39 97.93 98.19

10 tasks (0-9)
96.92 10.06 77.03 85.40 97.00 97.01

Table 1: Average accuracy (%) in MNIST
digit generation (ten sequential tasks).

Figure 3: t-SNE visualization of MNIST 0s gen-
erated after training all 10 tasks sequentially.

upper bound), sequential fine tuning (SFT, i.e. baseline), the adaptation of EWC to conditional GANs
proposed by [16], and the deep generative replay (DGR) module of [17] (an unconditional GAN
followed by a classifier to predict the label).

Figure 2 compares the images generated by the different methods after sequentially training the ten
tasks. Since DGR is unconditional, the category for visualization is the predicted by its classifier.
We observe that SFT forgets completely previous tasks in both datasets, while the other methods
show different degrees of forgetting. The four methods are able to generate MNIST digits properly,
although both MeRGANs show sharper ones. We also evaluate the recognizability of generated digits
using a classifier trained with real data (see Table 1), with MeRGANs obtaining the highest accuracy.

Forgetting can also be observed in t-SNE visualizations (of features extracted via a classifier). Figure 3
shows real 0s and generated 0s (i.e. first task) after learning the ten tasks. Samples generated by SFT
and EWC appear clearly in different clusters, while those from MeRGANs greatly overlap with real
0s, suggesting less forgetting while still keeping diversity.

3.2 Scene generation

We also evaluated MeRGANs in a more challenging domain and on higher resolution images (64×64
pixels) by sequentially learning to generate bedrooms, kitchens, churches (ourdoors) and towers (in
this order) of the LSUN dataset [18]. (in this order) (in this order).

Figure 4 shows examples of generated images. Each block column shows images generated for
different categories, after learning each task. We can observe that SFT completely forgets the
previous task, and essentially ignores the category condition. EWC generates images that have

3



Sequential fine tuning EWC MeRGAN-JTR MeRGAN-RA
Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

to
w

er
ch

ur
ch

ki
tc

he
n

be
dr

oo
m

Figure 4: Images generated after sequentially learning each task (column within each block) for
different methods (block column), two different latent vectors z (block row) and different conditions
c (row within each block). The network learned after the first task is the same in all methods. Note
that fine tuning forgets previous tasks completely, while the proposed methods still remember them.

Task 1 (bedroom) Task 2 (kitchen) Task 3 (church) Task 4 (tower)

SFT

MeRGAN-JTR

MeRGAN-RA

Iteration 1 16 256 5000 20000 1 16 256 5000 20000 1 16 256 5000 20000 1 16 256 5000 20000

Figure 5: Evolution of the generated images (category bedroom) during the sequential learning
process (rows). Sequential fine tuning forgets the previous task after just a few iterations (iterations
within each task are sampled in a logarithmic fashion), while MeRGANs still remember them.

characteristics of both new and previous tasks (e.g. bluish outdoor colors, indoor shapes), being
unable to neither successfully learn new tasks nor remember previous ones. In contrast, MeRGAN are
able to generate more realistic images of new categories while remembering previous categories. Note
that MeRGAN-RA generates always the same, say, bedroom (e.g. same point of view, colors, objects)
while MerGAN-JTR generates different ones, suggesting that the former enforces remembering at the
instance level, and the latter at the category level.

The evolution of generated images also provides complementary insight (see bedroom images shown
in Figure 5), particularly the first iterations. The most reavealing transition is between task 2 to 3
(i.e. kitchen to church), since the networks has to learn to generate many completely new visual
patterns found in outdoor scenes, such as "blue sky" regions that are not found in tasks 1 and 2.
Since the network is not equipped with knowledge to generate the blue sky, the new task has to reuse
and adapt previous one, interfering with previous tasks and causing forgetting. This interference
can be observed clearly in the first iterations of task 3 where the walls of bedroom (and kitchen)
images turn blue. MeRGANs provide mechanisms that penalize forgetting, forcing the network to
develop separate filters for the different patterns (e.g. for wall and sky). MeRGAN-JTR seems to
effectively decouple them, since we do not observe the same "blue walls" interference during task 4.
Interestingly, the same interference seems to be milder in MeRGAN-RA, but recurrent, since it also
appears again temporarily during task 4.

Conclusions

We have studied the problem of sequential learning in the context of image generation with GANs,
where the main challenge is to effectively address catastrophic forgetting. MeRGANs incorporate
memory replay as the main mechanism to prevent forgetting, which is then enforced through either
joint training or replay alignment. Our results show their effectiveness in retaining the ability to
generate competitive images of previous tasks even after learning several new ones. In addition to
the application in pure image generation, we believe MeRGANs and generative models robust to
forgetting in general, could have important application in many other tasks.
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