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Abstract

Conceptor-aided backpropagation (CAB) can alleviate catastrophic forgetting in a
feed-forward network. It uses conceptors to characterize the input space occupied
by previous tasks, and projects the gradients to free space for learning new tasks,
thus they do not interfere with the old tasks. In this paper, we discuss the rela-
tionship between conceptors and weight matrices trained using L2 regularization,
which clarifies why and how CAB works. We also show that when the input spaces
of different tasks overlap significantly, CAB will fail to learn new tasks due to
vanished gradients. To overcome this drawback, we propose another regularization
method based on conceptors. Empirical results confirm that the proposed approach
can learn a classifier incrementally even when the input spaces of different tasks
completely coincide.

1 Introduction

Conceptor-aided backpropagation (CAB) [He and Jaeger, 2018] was recently proposed to overcome
catastrophic forgetting in feed-forward networks and has shown promising performance on several
continual learning tasks based on the MNIST dataset [LeCun et al., 1998, Parisi et al., 2018]. CAB
uses conceptors to characterize the linear subspaces of representations already used by previous tasks.
During the backpropagation procedure for learning new tasks, CAB exploits only the components
outside the already occupied space, thus learning new tasks does not interfere with the old tasks.

For many machine learning systems, however, different tasks may share the same input space but
require distinct outputs. For example, an agent that needs to solve several vision-based tasks always
receives natural images as input. Therefore, the input distributions for all these tasks are exactly the
distribution of natural images. In this case, training such agent using CAB is difficult, since the input
vectors of new tasks are completely inside the space occupied by previous tasks, and almost no input
components are available for further adaptation.

In this paper, we modify the original approach of CAB and propose another regularization method
based on conceptors. Instead of shielding the weight matrices by the free space in the pre-synaptic
layer, our regularization method constrains them by the free space of the post-synaptic layer. As a
result, new activation triggered by the change of parameters appears only in the free space, thus it
does not interfere with old tasks. Moreover, useful features from the old tasks can be used by the new
tasks, which allows a forward transfer learning in the network [Lopez-Paz et al., 2017].

To test our method empirically and demonstrate that it can overcome the drawback of CAB, we
designed an incremental classifier learning experiment, in which a multi-class classification task
is divided into a sequence of One-vs-All [Rifkin and Klautau, 2004] binary classification tasks.
Experiment results show that, with the proposed method, a multilayer perceptron (MLP) is able to
incrementally learn the binary classification subtasks and achieve a final multi-label accuracy that
matches the performance of a jointly trained network.



2 Conceptor and L2 Regularization

In this section, we discuss the relationship between conceptors and L2 regularization, which will help
understand how CAB and the proposed method work.

Conceptor Consider a training dataset of input-output pairs D = {(x1, y1), . . . (xn, yn)} where
xi ∈ RN , yi ∈ RM . A conceptor matrix defined in [Jaeger, 2014] is a regularized identity map
C that minimizes LC :=

∑n
i=1 ||xi − Cxi||2 + α−2||C||2fro, and has a closed form solution as

C = XX>(XX> + α−2I)−1, where X is a N × n data collection matrix whose i-th column is xi.

Suppose the singular value decomposition (SVD) of X has the form X = UDV > with U being an
N ×N orthogonal matrix and V being an n×N matrix with orthonormal columns. D is a diagonal
matrix with descending diagonal entries di ≥ 0. The SVD of C can be written in terms of the SVD
of X: C = UΣUT , where Σ is a diagonal matrix with descending entries σi =

d2i
d2i+α

−2 ∈ [0, 1].
Therefore, C can be considered as a soft projection matrix. For vectors x in the linear subspace
spanned by principal components (columns of U ) with large variance d2i , Cx ≈ x; for vectors x in
the linear subspace spanned by principal components with low variance, Cx ≈ 0.

Finally, conceptors are subject to most laws of Boolean logic, given the following operations:

¬C :=I − C, (1)

Ci ∨ Cj :=(XiXi> +XjXj>)(XiXi> +XjXj> + α−2I)−1 (2)

Ci ∧ Cj :=¬(¬Ci ∨ ¬Cj) (3)

Here, ¬C characterizes the (soft) orthogonal complement of the subspace characterized by C.
Ci ∨ Cj is computed from the union of two sets of input vectors collected as columns in Xi and Xj ,
it describes the direct sum of the linear spaces characterized by Ci and Cj . These two operations play
an important role in CAB: given a conceptor C that describes the subspace already used by previous
tasks, ¬C returns the conceptor characterizing the free space; Ci ∨ Cj is useful for accumulating
conceptors from sever tasks such that only one conceptor is kept to represent the space used by all
previous tasks.

Relationship to Ridge Regression A linear map W that fits the dataset D by minimizing∑n
i=1 ||yi −Wxi||2 is given by ridge regression: W := Y X>(XX>)−1, where Y is the M × n

output data collection matrix whose i-th column is yi. If we add a L2 regularization term, and
minimize

∑n
i=1 ||yi −WL2xi||2 + α−2||WL2||2fro instead, we obtain the ridge regression solution:

WL2 := Y X>(XX>+α−2I)−1. It is easy to see thatWL2 = W (XX>)(XX>+α−2I)−1 = WC.
Hence, ridge regression is a composition of conceptor projection and linear regression, and

∀x ∈ RN , Cx ≈ 0 =⇒ WL2x ≈ 0 (4)

This implication can also be observed when WL2 is a weight matrix inside a deep network trained
with weight decay [Krogh and Hertz, 1992] (please refer to Appendix A for more details).

3 Methods

For simplicity, we illustrate the ideas of both CAB and the proposed method by only focusing on the
scenario of sequentially training two supervised tasks on a 3-layer MLP. A complete algorithm of
conceptor regularization that generalizes to any number of tasks and layers is given in Appendix B.

CAB Let T 1 = {(x1i , y1i )}i∈I1 , T 2 = {(x2i , y2i )}i∈I2 be two tasks to be trained on a MLP withL =
3 layers: ∀l ∈ {0, . . . , L−1}, al = [â>l , 1]>, âl+1 = fl(Wlal). HereWl, fl are weights and element-
wise nonlinear transfer functions respectively, and â0 := x is the input vector. CAB trains the network
on the first task by minimizing the objective function J 1 := L(âL(x1, {Wl}l∈{0,...,L−1}), y1) +

λ
∑L−1
l=0 ||Wl||2fro. Here λ is a regularizer parameter and L is some loss function depending on the

network output âL and the target y1 of task 1. After the network is trained on T 1, the resulting
weights that minimize the loss are saved as {W 1

l }l∈{0,...,L−1} and a batch of input vectors from
{x1i }i∈I1 are fed into the trained network to collect a set of activation vectors {a1l i} from each layer
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l. From these activation vectors, a conceptor C1
l is computed to characterize the linear subspace SCl

already used by the first task in layer l. Importantly, C1
l preserves the activation vectors when the

inputs are from T 1: C1
l a

1
l i ≈ a1l i, and its negation F 1

l := ¬C1
l that characterizes the orthogonal

complement of SCl
(which is considered the free space SFl

) will null these vectors: F 1
l a

1
l i ≈ 0.

When the second task comes, the new weights W 2
l (which will later replace W 1

l ) are computed
by adding incremental weights W inc

l to the old weights W 1
l : W 2

l := W 1
l + W inc

l . In the training
process of the second task, W 1

l will be fixed and only W inc
l will be adapted to minimize J 2 :=

L(âL(x2, {W 2
l }l∈{0,...,L−1}), y2) + λ

∑L−1
l=0 ||W inc

l ||2fro, but subject to an additional constraint that
||W inc

l C1
l ||2fro ≈ 0. CAB enforces the constraint by setting W inc

l to W inc
l F 1

l at every step of the
gradient descent, which essentially projects the rows ofW inc

l to the the orthogonal complement of SCl
,

thus W inc
l C1

l ≈ 0. As a result, the final weight W 2
l does not forget the first task: ∀l ∈ {0, . . . , L−

1}, fl(W 2
l a

1
l ) = fl((W

1
l +W inc

l )a1l ) = fl(W
1
l a

1
l +W

inc
l a1l ) ≈ fl(W 1

l a
1
l +W

inc
l C1

l a
1
l ) ≈ fl(W 1

l a
1
l +

0) = fl(W
1
l a

1
l ).

Limitation Although this method works well on tasks with different input spaces, it will fail when
their input spaces overlap significantly. Consider an extreme case where two tasks have exactly
the same inputs but different outputs: {x1i }i∈I1 = {x2i }i∈I2 , {y1i }i∈I1 6= {y2i }i∈I2 (for example,
{x1i }i∈I1 is the entire set of MNIST digit images, y1i , y

2
i are binary classification outputs such that

y1i = 1 only if x1i is an image of digit 0 and y2i = 1 only if x2i is an image of digit 1). In this
case, it is possible to train both tasks on the same network with a multi-head output (i.e., using
a separate matrix W j

L−1 at the last layer for each task j ), which is commonly used in continual
learning models (Bakker and Heskes [2003], Rusu et al. [2016], Li and Hoiem [2016], Serrà et al.
[2018]). However, CAB will perform poorly in this case because enforcing W inc

l C1
l ≈ 0 will

render W inc
l useless. This can be shown by induction: since the input vectors of both tasks are the

same, a20 = a10 ∈ SC1
0
, ∀l ∈ {0, . . . , L − 2}, if a2l = a1l , a

2
l+1 = [f(W 1

l a
2
l + W inc

l a2l )
>, 1]> ≈

[f(W 1
l a

1
l +W inc

l C1
l a

1
l )
>, 1]> ≈ [f(W 1

l a
1
l )
>, 1]> = a1l+1. Therefore, no layers except the last one

(the multi-head output) will contribute to improving the network’s performance on the second task.

Conceptor Regularization In order to overcome the above-mentioned problem, we replace
the original constraint ||W inc

l C1
l ||2fro ≈ 0 by Ω(W 1

l ,W
2
l , C

1
l+1) := E[||C1

l+1(fl(W
2
l εl) −

fl(W
1
l εl))||22] ≈ 0. Here εl is a random vector that has the same shape as al and is drawn from the

standard normal distribution. This new constraint is then expressed as a regularization term1 to be
added to the original objective function

J 2 = L(âL(x1, {Wl}l∈{0,...,L−1}), y1) + λ

L−1∑
l=0

||W inc
l ||2fro + γ

L−2∑
l=0

Ω(W 1
l ,W

2
l , C

1
l+1) (5)

The intuition behind this regularization term is that changing W 1
l to W 2

l should not result in any
change in the already used space SCl+1

of the next layer. This forces the change caused by the
increment weight W inc

l to only happen in the free space SFl+1
of the next layer.

Formally, for any al, if C1
l+1(fl(W

2
l al) − fl(W

1
l al)) ≈ 0, by Equ. 4, it implies that

W 1
l+1(fl(W

2
l al) − fl(W

1
l al)) ≈ 0. One can then check by induction that with the new param-

eters {W 2
l }l∈{0,1} and the task-specific output weight W 1

2 , the 3-layer MLP does not forget the first
task:

f2(W
1
2 f1(W

2
1 f0(W

2
0 x

1
i ))) = f2(W

1
2 [f1(W

2
1 f0(W

2
0 x

1
i ))− f1(W

1
1 f0(W

2
0 x

1
i )) + f1(W

1
1 f0(W

2
0 x

1
i ))])

≈f2(W
1
2 f1(W

1
1 f0(W

2
0 x

1
i ))) = f2(W

1
2 f1(W

1
1 [f0(W

2
0 x

1
i )− f0(W

1
0 x

1
i ) + f0(W

1
0 x

1
i )]))

≈f2(W
1
2 f1(W

1
1 f0(W

1
0 x

1
i )))

On the other hand, as long as the old task does not occupy the entire space of the (l + 1)-th hidden
layer (in other words, C1

l+1 is not almost the identity matrix), the regularization term does not imply
fl(W

2
l al) = fl(W

1
l al), thus W inc

l can still be adapted. A way to check how much capacity is left for
further learning is to plot the singular value spectra of C1

l+1, if there are still some singular values

1This regularization is not applied to the last layer, since a saparate W j
L−2 is used for every task j.
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Table 1: Accuracies on 10 Binary MNIST Task using different methods
Method Testing Accuracy

Joint Training 98.18% (best achieved in five runs)
CAB (α = 6) 23.74%
CAB (α = 10−7) 49.16%
CAB (α = 0.15) 69.73% (best achieved in five runs)
Only Last Layer 64.59%
Proposed Method (α = 4) 98.032(±0.02)% (averaged over five runs)

close to 0, SC1
l+1

does not equal to the entire space and the network is capable of learning more. In the
case that the entire space of a hidden layer is occupied, the capacity can be extended by introducing
new neurons in the overloaded hidden layer.

4 Experiments

Here we present only the results of the experiments. Please refer to Appendix C for more details.

10 One-vs-All MNIST To clearly demonstrate that the proposed method can overcome the limita-
tion of CAB, we turned the standard task of classifying MNIST digits into a sequence of 10 binary
classification subtasks, where every task is trained on the images from the entire MNIST training set,
but for every new task, the network has to detect a different class by returning 1 for images from that
class and 0 otherwise. After all 10 binary classification tasks are learned, we evaluate the network
by its performance on classifying the entire test set into 10 classes, where the class with the largest
output value is taken to be the prediction.

A standard classifier was trained as a control experiment, and we call this scheme “Joint Training".
An ideal continual learning method should achieve an accuracy close to this case. For CAB, we
chose different values for the aperture α. Larger aperture implies stronger protection of parameters
for previous tasks. Since the last layer of the network is a multi-head operation, every task has its
own output weights. For this reason, we also conducted an experiment where only the last layer can
be adapted after the first task is learned. Table 1 compares the proposed method with other methods.

Disjoint MNIST In the second experiment, we split the original MNIST dataset into two disjoint
subsets each containing images of five digits (0 − 4 in the first dataset and 5 − 9 in the second)
and compute the average accuracy after learning them one after the other. In this case, the input
spaces of two tasks overlap with each other but they are not exactly the same. The best result on
this experiment was 99.0% achieved by Serrà et al. [2018]. With the same network architecture,
conceptor regularization achieves comparable performance (99.05%).

Permuted MNIST Finally, we tested the conceptor regularization method on the permuted MNIST
experiment, in which we randomly shuffle the pixels in MNIST to create another dataset of the same
size as the original MNIST, and compute the average performance after learning them one after the
other. In this case, due to the random permutation, input spaces of two different tasks intersect very
little, so CAB was able to achieve very high accuracy: 97.34%. Conceptor regularization performs
almost as good as CAB with a final accuracy at 97.3%.

5 Conclusion

Conceptor-aided backprop fails to learn new tasks when the input spaces of different tasks overlap
significantly. We proposed another regularization method based on conceptors to overcome this
limitation. To illustrate how and why our method works, we also discussed the relationship between
conceptors and L2 regularization. Conventionally, L2 regularization has been used to prevent a model
from learning noise in training data in order to achieve better generalization. CAB and conceptor
regularization show that the capacity saved by regularization from learning one task can be squeezed
out by conceptors for learning another task.
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A Conceptor and Weight Decay

When WL2 is a weight matrix in a deep network trained with weight decay, the implication ∀x ∈
RN , Cx ≈ 0 =⇒ WL2x ≈ 0 cannot be shown analytically, but it is possible to check this
empirically: the statement holds if WL2 nulls vectors in the linear subspace spanned by principal
components (PCs) corresponding to very low variances. In other words, if we compute the matrix
W̃L2 that represents the same linear transformation as WL2 but changes the basis of input space to
the PCs: W̃L2 := WL2U , the norms of the last columns in W̃L2 should be close to 0.

To verify our hypothesis, we trained two feed-forward networks with [784− 800− 800− 10] neurons
on the MNIST classification task, one with weight decay and the other one without. We call the
weight matrices connecting the two layers of hidden neurons WL2 and W , respectively. After training
the network, we computed the principal components of activations in the first layer of hidden neurons
and collected these PCs as columns of U and UL2, respectively. Figure 1 visualizes the norms of
columns in W̃ = WU and W̃L2 = WL2U . It is easy to see that with L2 regularization, the columns
corresponding to PCs with low variances have almost zero norms, hence this agrees with the nulling
effect of conceptors.

Figure 1: The L2 norm of columns in W̃ := WU and W̃L2 := WL2U . Due to weight decay, the
norm of the last columns of W̃L2 are close to 0, hence vectors in the linear subspace spanned by
principal components corresponding to small variances will be nulled by it.

B Conceptor Regularization Algorithm

The following algorithm describes how to train a network with L layers on a sequence of J supervised
tasks using conceptor regularization (∀j ∈ {1, . . . , J}, T j = {(xji , y

j
i )}i∈Ij ) :

• Initialization (no task trained yet):
∀l = 1, . . . , L−1, setA0

l to zero. ∀l = 0, . . . , L−1, setW 0
l to zero and randomly initialize

W inc
l .

• Incremental task learning: For j = 1, . . . , J do:

1. LetW j
l := W j−1

l +W inc
l for l < L andW j

L := W inc
L . UpdateW inc

l by stochastic gradi-
ent descent to minimizeJ = L(aL(xj , {W j

l }l∈{0,...,L−1}), yj)+λ
∑L−1
l=0 ||W inc

l ||2fro+

γ
∑L−2
l=0 Ω(W j−1

l ,W j
l , A

j−1
l ). The gradient of J with respect to W inc

l is estimated
using a batch of samples for xj , yj and εl for l = 0, . . . , L− 2. The samples for εl are
randomly drawn from standard normal distribution.

2. After training on the j-th task, run the forward procedure again on a batch of input
vectors from the j-th training dataset, and collect activations {ajl i} to compute a
conceptor Cjl .

3. Update the conceptor for already used space using OR operation: ∀l = 1, . . . , L −
1, Ajl = Aj−1l ∨ Cjl
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C Experiment Details

The network architecture used for all experiments has [784−800−800−10] neurons. We use rectified
linear units for the hidden neurons, and sigmoid transfer function for the output neurons.Weight
matrices in all layers and for all tasks are randomly initialized by the Xavier initializer [Glorot and
Bengio, 2010]. The loss function is optimized by the Adam optimizer [Kingma and Ba, 2014] with
default parameters provided by Tensorflow [Abadi et al., 2015]. In all experiments, each subtask
is trained for 10 epochs. Unless otherwise stated, we use the following hyperparameters: aperture
α = 4 , weight decay parameter λ = 9× 10−6 and conceptor regularization strength γ = 10.

In the 10 One-vs-All experiment, if we choose a large aperture α = 6 for CAB, the binary classifica-
tion accuracy decreases to almost chance level after the first 3 subtasks, since the gradients are nulled
by conceptor projection and new subtasks will not be learned. If we adopt a very small aperture
α = 10−7, CAB is equivalent to normal back-propagation, and the network learns every subtask
perfectly but will also forget catastrophically. Among all apertures we tried, the best performance is
achieved when α = 0.15, in which case the conceptors partially protect past knowledge, and achieve
an optimal balance between learning and forgetting. However, due to their shared input space, the
subtasks are intrinsically conflicting with each other from the perspective of CAB. Therefore,the
overall accuracy is still far from the joint training scheme.

Figure 2 hows how the singular values of conceptors on the two hidden layers grow as more tasks are
learned with Conceptor regularizers.

(a) hidden layer 1 (b) hidden layer 2

Figure 2: Developments of singular value spectra of conceptors for already occupied space in two
hidden layers as more binary classification tasks are learned.
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