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Abstract

Continual learning consists of algorithms that learn from a stream of data/tasks
continuously and adaptively thought time, enabling the incremental development
of ever more complex knowledge and skills. The lack of consensus in evaluating
continual learning algorithms and the almost exclusive focus on forgetting motivate
us to propose a more comprehensive set of implementation independent metrics
accounting for several factors we believe have practical implications worth con-
sidering in the deployment of real AI systems that learn continually: accuracy or
performance over time, backward and forward knowledge transfer, memory over-
head as well as computational efficiency. Drawing inspiration from the standard
Multi-Attribute Value Theory (MAVT) we further propose to fuse these metrics
into a single score for ranking purposes and we evaluate our proposal with five
continual learning strategies on the iCIFAR-100 continual learning benchmark.

1 Introduction and Related Work

For an exhaustive evaluation, we can assume to have access to a series of test sets Tei over time. The
aim is to assess and disentangle the performance of our learning hypothesis hi as well as to evaluate
if it is representative of the knowledge that should be learned by the correspondent training batch Tri.
However, as discussed in (Lopez-Paz and Ranzato, 2017), a different granularity of the evaluation at
the task level can as well be achieved by having the same test batch for many Tri.

An overall performance Ω in a supervised classification setting was proposed in (Hayes et al., 2018)
based on the relative performance of an incrementally trained algorithm with respect to an off-line
trained one (which has access to all the data at once, and acts as an upper bound). Serrà et al. (2018),
instead, try to directly model forgetting with a proposed forgetting ratio metric ρ that considers
a vector of test accuracies for each Tei at random initialization that represents a lower bound on
accuracy. In the same setting, in (Lopez-Paz and Ranzato, 2017) other three important metrics are
proposed: Average Accuracy (ACC), Backward Transfer (BWT), Forward Transfer (FWT). In this
case, after the model finishes learning about the training set Tri, its performance is evaluated on all
(even future) test batches. The higher these metrics, the better the model. If two models have similar
ACC, the most preferable one is the one with larger BWT and FWT. While forgetting and knowledge
transfer could be quantified and evaluated in various ways (Farquhar and Gal, 2018; Hayes et al.,
2018), these may not suffice for a robust evaluation of CL strategies in practice. We thus propose a
comprehensive set of metrics that expands and complements existing ones.

∗Both authors contributed equally to this work.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



2 Proposed Metrics for Continual Learning

In Continual Learning, D can be thought of a potentially infinite sequence of unknown distributions
D = {D1, . . . , Dn} over X × Y we encounter over time, with X and Y as input and output random
variables respectively. Given h∗ as the general target function (i.e. our ideal prediction model), a task
T is defined by a unique task label t and its target function g∗

t̂
(x) ≡ h∗(x, t = t̂), i.e., the objective

of its learning. A CL algorithm ACL is an algorithm with the following signature:

∀Di ∈ D, ACLi : < hi−1, T ri,Mi−1, t >→< hi,Mi > (1)

Where hi is the model, Tri is the training set of examples drawn from the respective Di distribution,
Mi is an external memory where we can store previous training examples and t is a task label. For
simplicity, we can assume N as the number of tasks, one for each Tri.

In this CL framework, we propose algorithm ranking metrics according to different desiderata
attainable in CL divided on seven criteria. In order to provide bounds to each metric (originally lying
in f : [0,∞[), we map it to a [0, 1] range (as it is commonly done, e.g., in Multi-Attribute Value
Theory (MAVT) (Keeney and Raiffa, 1993)) and formulate it so that its optimal value is given by its
maximization. This is to preserve interpretability of the proposed aggregating CLscore metric, and
allow to evaluate CL algorithms with respect to multiple criteria, rank them from best to worst, and
accommodate weighting schemes according to constraints and desiderata.

Accuracy: Given the train-test accuracy matrix R ∈ RN×N , which contains in each entry Ri,j
the test classification accuracy of the model on task tj after observing the last sample from task ti
(Lopez-Paz and Ranzato, 2017), Accuracy (A) considers the average accuracy for training set Tri and
test set Tej by considering the diagonal elements of R, as well as all elements below it (see Table 2):

A =

∑N
i≥j Ri,j
N(N+1)

2

(2)

While the A criteria was originally defined to asses the performance of the model at the end of the
last task (Lopez-Paz and Ranzato, 2017), we believe that an accuracy metric that takes into account
the performance of the model at every timestep i in time better characterizes the dynamic aspects of
CL. The same idea is applied to the modified BWT and FWT metrics introduced below.

Backward Transfer (BWT) measures the influence that learning a task has on the performance on
previous tasks (Lopez-Paz and Ranzato, 2017). The motivation arises when an agent needs to learn in
a multi-task or data stream setting. The lifelong abilities to both improve and not degrade performance
are important and should be evaluated throughout its lifetime. It is defined as the accuracy computed
on Tei right after learning Tri as well as at the end of the last task on the same test set. (see Table 2).
Here, as in the accuracy metric, we expand it to consider the average of the backward transfer after
each task:

BWT =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)
N(N−1)

2

(3)

Because the original meaning of BWT assumed positive values for backward transfer and negative
values to define (catastrophic) forgetting, in order to map BWT to also lie on [0, 1] and give more
importance to two semantically different concepts, BWT is broken into two different clipped terms:
The originally negative (forgetting) BWT (now positive), i.e., Remembering, as

REM = 1− |min(BWT, 0)| (4)

and (the originally positive) BWT, i.e., improvement over time Positive Backward Transfer

BWT+ = max(BWT, 0) (5)

Forward Transfer: FWT measures the influence that learning a task has on the performance of
future tasks (Lopez-Paz and Ranzato, 2017). Following the spirit of the previous metrics we modify
it as the average accuracy for the train-test accuracy entries Ri,j above the principal diagonal of
R, excluding it (see elements accounted in Table 2 in light gray and additional information in the
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appendix). Forward transfer can occur when the model is able to perform zero-shot learning. We
therefore redefine FWT as:

FWT =

∑N
i<j Ri,j
N(N−1)

2

(6)

Model size efficiency: The memory size of model hi quantified in terms of parameters θ at each task
i, Mem(θi), should not grow too rapidly with respect to the size of the model that learned the first
task, Mem(θ1). Model size (MS) is thus:

MS = min(1,

∑N
i=1

Mem(θ1)
Mem(θi)

N
) (7)

Samples storage size efficiency: Many CL approaches save training samples as a replay strategy to
not forget. The memory occupation in bits by the samples storage memory M , Mem(M), should be
bounded by the memory occupation of the total number of examples encountered at the end of the
last task, i.e. the cumulative sum of Tri here defined as the lifetime dataset D (associated to the set
of all distributions D). Thus, we define Samples Storage Size (SSS) efficiency as:

SSS = 1−min(1,

∑N
i=1

Mem(Mi)
Mem(D)

N
) (8)

Computational efficiency: Since the computational efficiency (CE) is bounded by the number of
multiplication and addition operations for the training set Tri, we can define the average CE across
tasks as:

CE = min(1,

∑N
i=1

Ops↑↓(Tri)·ε
1+Ops(Tri)

N
) (9)

where Ops(Tri) is the number of (mul-adds) operations needed to learn Tri, and Ops ↑↓(Tri) is the
number of operations required to do one forward and one backward (backprop) pass on Tri. When
the value of Ops ↑↓(Tri) is negligible w.r.t. Ops(Tri), a scaling factor associated to the number
of epochs needed to learn Tri, ε larger than a default value of 1, can be used to make CE more
meaningful (i.e. avoiding compression of the values very near to zero). Since we are essentially
moving the lower bound of the computation, which depends on the benchmark complexity, this
adjustment also translates on better interpretability of CE (Fig. 1).

In order to assess a CL algorithm ACL, following (Ishizaka and Nemery, 2013), each criterion ci ∈ C
(where ci ∈ [0, 1]) is assigned a weight wi ∈ [0, 1] where

∑C
i wi = 1. Each ci should be the average

of r runs. Therefore, the final CLscore to maximize is computed as:

CLscore =

#C∑
i=1

wici (10)

where each criterion ci that needs to be minimized is transformed to ci = 1−ci to preserve increasing
monotonicity of the metric (for overall maximization of all criteria in C). CLstability is thus:

CLstability = 1−
#C∑
i=1

wistddev(ci) (11)

3 Experiments and Conclusions

We evaluate the CL metrics on cumulative and naïve baseline strategies as in (Maltoni and Lomonaco,
2018), Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2016), Synaptic Intelligence (SI)
(Zenke et al., 2017) and Learning without Forgetting (LwF) (Li and Hoiem, 2016). iCIFAR-100
(Rebuffi et al., 2018) dataset is used: each task consists of a training batch of 10 (disjoint) classes at a
time.
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Figure 1: a) Spider chart: CL metrics per strategy (larger area is better). b) Accuracy per CL
strategy computed over the fixed test set as proposed in (Lomonaco and Maltoni, 2017; Maltoni and
Lomonaco, 2018).

Results for each proposed metric are illustrated in Table 1 (each criterion ci reports the average
over 3 runs); Fig. 1 illustrates the CL metrics variability for each criterion reflecting a desirable
property of CL algorithms, as well as the needs of novel techniques addressing different aspects
than accuracy and forgetting, that can be important depending on the application. For simplicity, we
chose an homogeneous configuration of criteria weights that values each CL metric equally (i.e., each
wi = 1

#C ). However, the Appendix shows results on other possible configurations.

While the CLscore is optional to report, the aim of the metrics and results is to stimulate comprehen-
sive evaluation practices. In future work we plan to refine these metrics and assess more strategies in
more exhaustive evaluation settings. More thorough studies should also provide insights that assess
the importance of different metric schemes and their entanglement, and how to use these metrics
wisely to assist choosing among algorithms.

Table 1: CL metrics and CLscore for each CL strategy evaluated (higher is better).

Strategy A REM BWT+ FWT MS SSS CE CLscore CLstability

Naïve 0.3825 0.6664 0.0000 0.1000 1.0000 1.0000 0.4492 0.5140 0.9986
Cumul. 0.7225 1.0000 0.0673 0.1000 1.0000 0.5500 0.1496 0.5128 0.9979
EWC 0.5940 0.9821 0.0000 0.1000 0.4000 1.0000 0.3495 0.4894 0.9972
LWF 0.5278 0.9667 0.0000 0.1000 1.0000 1.0000 0.4429 0.5768 0.9986
SI 0.5795 0.9620 0.0000 0.1000 0.4000 1.0000 0.3613 0.4861 0.9970
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A Implementation Details

A.1 Metrics and benchmark illustration

Table 2: Elements in R accounted to compute the Accuracy (white and cyan elements), BWT (in
cyan), and FWT (in light gray) criteria. R∗ = Rii, Tri = training, Tei= test tasks.

R Te1 Te2 Te3
Tr1 R∗ Rij Rij
Tr2 Rij R∗ Rij
Tr3 Rij Rij R∗

Matrix R ∈ RN×N contains in each entry Ri,j the test classification accuracy of the model on task j
after observing the last sample from task i (Lopez-Paz and Ranzato, 2017). N is the number of tasks;
here for simplicity we make the number of distributions n equal to N . Table 2 shows the elements in
the accuracy matrix used for each metric for an example matrix of N = 3 tasks. R∗ = Rii coincides
with the (normally) optimal accuracy right after using training set Tri and testing on test set Tei.

Note that in order to compute Accuracy, we do not only consider as (Lopez-Paz and Ranzato, 2017)
the last row of the accuracy matrix R, but also steps in between each new training set learned, to
acknowledge the degradation and improvement through every time step in time. Notice that N
corresponds to the number of unique tasks, but can also be seen as the number of distinct data
distributions: if a same task or data distribution is repeated, its Rij values will be evaluated within the
corresponding same set of batches Tri and Tei if they co-occur in time within the same timed batch id
i. As soon as a change on task or distribution i in the stream of input data occurs, it will be considered
as a new task with new Tri and Tei. This allows for a fair evaluation of A,REM,BWT+ and
FWT over time.

In FWT, the substraction term (vector bi of test accuracies for each task at random initialization)
in the original FWT formula in (Lopez-Paz and Ranzato, 2017) was removed in our definition of
FWT in order to guarantee non negative values (i.e. in case of negative FWT) and allow for potential
positive transfer, as they demonstrate it is possible to happen with a shared output space. The idea is
supporting the fact that algorithms can do worse than random accuracy for some strategies (we refer
the reader to (Lopez-Paz and Ranzato, 2017) for cases of positive FWT).

The original BWT (Lopez-Paz and Ranzato, 2017) would return domains for BWT− ∈ [0, 0.5),
and for BWT+ ∈ [0.5, 1], respectively which, through the clipping, are transformed, as the rest of
criteria in the CL metric, to stay in [0,1].

Criteria weights setting and experiments Despite the experiments showing the CLscore to be
optional and context dependent; the aggregation score is most meaningful when a community agrees
on a particular evaluation criteria (similarly to the mAP metric), or in specific settings where the
weights for the different criteria are clearly definable. Our experiments use three weight configurations
W = [wA, wMS , wSSS , wCE , wBWT , wREM , wFWT ]. The first one used homogeneous weights
(each wi = 1

#C ) and the second and third use W2 = [0.4, 0.1, 0.1, 0.1, 0.2, 0.05, 0.05] and W3 =
[0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05], as particular examples aiming at reflecting what the recent CL
literature has roughly been valuing the most; however, any configuration could be used.

Model: The CNN model used in this experiment is the same used in (Zenke et al., 2017) and (Maltoni
and Lomonaco, 2018) and consists of 4 convolutional + 2 fully connected layers (details available in
Appendix A of (Zenke et al., 2017)). Hyper-parameters are chosen to maximize the accuracy metric
A for each strategy.

Benchmark: CIFAR-100 (Krizhevsky, 2009) classification dataset has 100 classes containing 600
natural images (32×32) each (500 training + 100 test). The CL setting of iCIFAR-100 splits the 100
classes in groups. In this paper we consider groups of 10 classes, and therefore obtain 10 incremental
batches.

Baselines: The lower and upper bound CL strategies are naïve and cumulative learning, respectively.
The naïve learning strategy starts at Tr1 and learns continuously the coming training sets Tr2, ..., T rN
simply tuning the model across batches without any specific mechanism to control forgetting, except
early stopping. The cumulative strategy starts from scratch every time, learning from the accumulation
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of Tr1, ..., T ri−1, T ri retrained with the patterns from the current batch and all previous batches
(only in this approach we assume that all previous data can be stored and reused). This cumulative
method is a sort of upper bound, or ideal performance that CL strategies should try to reach (Maltoni
and Lomonaco, 2018).

Spider chart in Fig 1 shows all objective criteria, where the larger the area occupied under the CL
algorithm curve, the highestCLscore (more optimal) it is. Fig. 2 shows each of the main CL strategies
put in context compared with the considered lower and upper bounds respectively, i.e., naïve, and
cumulative strategies. The farther away the evaluated strategy is from the cumulative (blue) surface,
the larger room for improvement for the CL strategy.

Figure 2: Spider chart with CL metrics showing CL strategies EWC, LWF and SI with their respective
lower and upper bound (Naïve and Cumulative resp.) as reference baselines (to properly visualize
Fig. 1). The weight configuration for each criterion used is W1 where wi = 1

7 for each wi ∈W .

Table 3: CLscore and CLstability for all CL strategies according to different weighting configurations
Wi = [wA, wMS , wSSS , wCE , wREM+ , wBWT , wFWT ], where W1 sets wi = 1

7 for each wi ∈ W .
The second setting of a concrete metric weights is W2 = [0.4, 0.05, 0.2, 0.1, 0.15, 0.05, 0.05]. A third
arbitrary configuration is W3 = [0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05].

Strategy/CL Metric CLscore CLstability

W1 W2 W3 W1 W2 W3

Naïve 0.5140 0.5529 0.5312 0.9986 0.9969 0.9973
Cumulative 0.5128 0.6223 0.5373 0.9979 0.9976 0.9964
EWC 0.4894 0.6449 0.5816 0.9972 0.9976 0.9940
LWF 0.5768 0.6554 0.6030 0.9986 0.9990 0.9972
SI 0.4861 0.6372 0.5772 0.9970 0.9945 0.9927
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