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Abstract
Continual Learning (CL) has recently seen a surge of interest, highlighting the importance of the topic for machine
learning and artificial intelligence. While most recent work has been dedicated towards algorithmic improvements,
robust evaluation remains unsolved - a shortcoming we explore in this work. The CL problem is usually described
as a list of desiderata when facing a non-stationary stream of data, in most cases structured as a known sequence of
different tasks. The goal of a CL scheme is then to leverage previously acquired skills when facing new problems,
but also to retain skills and perform well on previously encountered tasks. Ideally, a continual learning algorithm
does so with constant memory and computational footprint in order to scale, and can learn without being aware of
task boundaries. These different desiderata are in tension with each other, making both problem specification
and evaluation difficult. In this work, we explore the relationship between data and evaluation and argue that one
needs to test the system in natural scenarios. Thus, we propose a new benchmark based on the popular video game
StarCraft II in the hope to better understand existing approaches to continual learning. A video of human play on
the proposed benchmark can be found here: https://goo.gl/vdzkut.

1. Introduction
As a problem, CL is (usually) defined as learning from a non-stationary stream of data, structured as a sequence of tasks1 to
better highlight and control the non-stationarity aspect. This setting contradicts the basic assumption of statistical learning,
namely that data is independently and identically distributed, hence making learning difficult.

The reasons for why data is non-IID can be diverse. For sequential modelling, one might want to preserve order in an attempt
to discover long and very long-term structure. Unfortunately, this can lead to overfitting the most recently seen examples
while globally underfitting the dataset [1]. In other cases, parts of the dataset might need to be deleted periodically for legal
reasons. When facing real time distributional shifts, it might be infeasible to retrain past data or train new models from
scratch [2]. In active or reinforcement learning (RL), non-stationarity is imposed by how the model observes data. In the RL
case, observations are the outcome of agent interactions with the environment and hence the distribution of observations
changes as the agent learns. Because of the richness of existing reinforcement learning environments, this change need not
be a gradual drift, but could be sudden.

One usually expects the system, exposed to the sequence of fairly distinct tasks forming the CL problem, to achieve several
goals: (i) It must not forget previously learnt skills (i.e. avoid catastrophic forgetting). (ii) We expect forward transfer, i.e.
the ability to accelerate learning on new tasks by exploiting previously acquired skills. In addition, the system should be
capable of backward transfer, possibly improving performance on past tasks. (iii) The CL scheme ought to operate with a
fixed resource footprint (in terms of memory, model size, computation) – which has to be a prerequisite in order to be able
to scale to a large number of tasks. This is required in life-long learning scenarios, when the system has to continuously
interact and adapt to its environment. (iv) Ideally, the system should be capable of doing so without knowledge of task
boundaries (or task identities) or when no boundaries exist at all (i.e. one task slowly morphs into another).

It is important to note that some of these constraints are in direct contradiction. Perfectly remembering previously learnt
skills is impossible (provided fixed capacity) when facing a potentially unbounded number of problems. Moreover, being
able to perfectly remember previous tasks while expecting transfer or generalisation, are also goals in tension each other.
Therefore, certain trade-offs need to be made implicitly, meaning different desiderata cannot be targeted in isolation2. We

1While what a task is, or what it means to have sufficiently diverse tasks might not be well defined concepts, this framework does
provide a clean and constructive way to analyse the problem.

2As this bears the risk of progressing on a goal while sacrificing another
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Map Build
Level Combat Economy exploration orders

1©MoveToBeacon
2© FindAndDefeatZerglings • •
3© GatherMinerals •
4© GatherGas • • •
5© BuildMarines • • •
6© BuildMarauders • • •
7© GatherMineralsAndGas • • •
8© BuildArmy • •
9© DefendAttackWaves •
10© FindEnemyBase •
11© DestroyEnemyBase • • • •

Figure 1 & Table 1: Left: Example in-game screenshots on levels 1©, 4©, 9© and 11©. Best viewed on a computer. Right: A categorisation
of high-level skills required to solve the problems in each level.

argue that meaningful trade-offs are conditioned on the problem instance (i.e. the data used), which is the central theme of
this work. Motivated by a recent surge in interest in the topic [e.g 2–17] we stress the importance of meaningful benchmarks.

Thus, we propose a new challenge in the form of a large scale problem going beyond the settings considered in recent work.
The challenge was developed by a professional map designer, thus appearing natural to humans, a characteristic lacking in
current benchmarks. We further argue that the proposed benchmark is a suitable tool to improve the understanding of the
state of the field. Finally, we hope it will guide researchers in developing approaches consistent with above desiderata.

2. Related work
We divide approaches to CL in three categories, similar to [2]:

A first set of approaches address the problem by means of regularisation [e.g 7, 14, 18, 19]. In their purest form, these
methods assume no data from previous tasks and can be seen as approximating the missing terms of the multi-task objective
(e.g. by a quadratic regulariser). From a Bayesian perspective, they gradually build an informative prior that restricts learning
such that previous tasks are not forgotten. The regularisation slows down learning for certain important-for-previous-tasks
weights which is similar to the reduction in plasticity for neurons during memory consolidation [7, 14].

A second family of approaches address the problem in a structural manner [e.g. 11, 20]. They rely on localising learning to a
subset of weights specific to the current task, and protecting previously learnt tasks by freezing the rest of the weights. These
approaches do not follow the popular end-to-end learning paradigm, and the focus of adaptation is often heuristically defined
rather than learnt. The resulting models end up reflecting the structure of the learnt sequence of tasks, being fundamentally
modular, where different tasks are learnt in separate interconnected modules.

A third family of approaches rely on replay to allow the minimisation of the multi-task objective rather than the loss on the
current task. There are usually two subset of approaches, based on how the previous seen data is stored, i.e. directly or
compressed via a generative model [e.g 21]. Experience replay can be an effective means to reduce forgetting, but it remains
unclear how to scale such methods to a very large number of tasks [6].

Of course, many approaches are in-between these rough categories. For example Progress&Compress [13] relies on both a
regularisation term and structural changes of the model. Elastic Weight Consolidation [14] and Learning Without Forgetting
[22] use different output layers per task, which is a structural change. Recently, small replay buffers (known as core sets)
have also been introduced to Bayesian methods [18]. Furthermore, there exist approaches that are not captured at all by this
categorisation, or that might not directly target continual learning, but have been shown to be important building blocks. The
Forget-me-not process [23], for instance, is an approach for automatically inferring the identity of the current task from
observation. Knowledge distillation [24] has also been proven to be an important tool for transfer.

Finally, [10] provide a recent comprehensive review of the field. [2] and [3], similar to this work, acknowledge and discuss
the important role the data and metrics plays in defining the potential trade-offs between the different desiderata, and hence
the performance of a given approach.

Note that while most modern algorithmic approaches have been developed in recent years, the problem itself has been
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identified long before [e.g. 25–28].

3. Existing benchmarks and evaluations
The de-facto benchmarks, used by most published works, rely on MNIST [29] as the underlying source of data. For example,
Permuted MNIST applies different fixed permutations of the pixels to generate new tasks [15]. Other variants of the
benchmark rely on splitting the set of possible labels into several groups (known as Split MNIST), each group representing
a different task.

Fundamentally, one issue with these benchmarks is the use of MNIST itself as the main source of data. The resulting
tasks lack complexity, making it difficult to measure or observe either positive or negative forward transfer. Given the
large capacity of neural networks, the relative simplicity makes it hard to understand how the system deals with capacity
constraints. In the case of Permuted MNIST, a further issue is the lack of resemblance between examples from different
tasks.

As a result, evaluation efforts usually focus on avoiding catastrophic forgetting, ignoring other important aspects of CL.
Unfortunately, besides these common benchmarks, most works do not agree on additional experiments, which further
increases the difficulty of a proper comparison between existing approaches.

Lastly, the analysis of the approach itself can sometimes be problematic. We argue that the default analysis for continual
learning ought to measure both forward and backward transfer. In addition, other important aspects, such as the computational
footprint, both in terms of memory and computation, should be reported as a function of the number of tasks. The bound on
computation acknowledges the asynchronous nature of the world, e.g. in a reinforcement or online learning setting, the
environment does not wait on the agent to act. Hence it is important for the system to be able to react and learn quickly,
regardless of the number of tasks it had been exposed to.

However, reducing these aspects to a single number is difficult. It implies the definition of a weighting between the different
aspects of CL,which might be hard to infer. The issue is further hidden by the considered data distribution. For example,
if tasks are completely unrelated (e.g. random sequence of Atari games, as used in [14]), there is little to no potential of
positive forward transfer beyond low-level visual features, again shifting the focus on negative backward transfer (forgetting),
regardless of how performance is measured. Hence, if the tasks are similar, the role of forward transfer might increase. There
are also several kinds of transfer or interference possible (e.g. composing knowledge instead of just reusing it, preserving a
policy for different visuals, or different policies for the same visuals). This leads to most works focusing on one particular
aspect, ignoring many of the others. However, due to the trade-off discussed in Section 1, they cannot be treated in isolation.

Therefore we think we need a richer set of benchmarks accepted by the community and a richer set of evaluation metrics
that can make this trade-off more explicit and provide a rounded perspective of the pros and cons of proposed approaches.
Moving in this direction, [3] proposes to look at interplay between forgetting and positive transfer which we consider a step
in the right direction.

4. New challenge
4.1. Description

We propose a new benchmark for continual learning based on the video game StarCraft II. StarCraft provides an ideal
environment for building a CL benchmark as it can act as a persistent complex environment in which an agent can sequentially
learn multiple skills that are later composed and reused. The challenge is designed to feel natural to a human player, hence
providing opportunity for skill transfer and composition that is natural to humans. To this end, the sequence of proposed
tasks is structured as a campaign designed to teach an agent basic game play (similar to how a tutorial for a human player
might be designed). As the complexity of the tasks grows gradually, performing well on future levels rests on remembering
and composing skills learnt along the way. To also test resilience against forgetting, not all skills are present in all levels. In
Figure 1, we show an intuitive (yet not complete) list of skills required per level.

The campaign is structured into 11 different levels, each with a descriptive name. Note that the first 6 levels are meant to
teach basic skills required to play the game (using a dense reward structure). Example skills are economy (collect minerals
or gas), combat, build orders needed to construct certain buildings and units, map exploration to find the enemy, among
others. In contrast, the last 5 tasks are more complex, and the reward signal is sparser. The skills previously learnt somewhat
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in isolation now need to be deployed and combined in order to succeed.

In each level, agents are allowed a fixed budget of episodes to learn from before advancing to the next problem. Episodes
have a fixed time limit, meaning that an agent may fail by running out of time or in case of defeat. Crucially, we disallow
re-visits to previous levels (although past data may be stored) and force agents to proceed to the next level regardless of
whether currently taught skills have been mastered. Note also that recent work has stressed the difference between Single
Head and Multi Head evaluation. A head refers to an output layer of a neural network. As all levels share a common action
space, we enforce the more difficult Single Head case.

Within the campaign the environment stays persistent, offering common structure between levels. However, as is, the
campaign is not targeting smoothly evolving tasks. For example, the starting point of any level is independent of the state at
the end of the previous level. Note that a future version of the benchmark might introduce such tasks.

Level Random Experts Multi-Task Finetuning Dropout [30] SER [6]

1© 187 2000 2000 39 85 1998
2© 283 1869 1790 256 246 1009
3© 18 2000 2000 3 22 70
4© 3 1903 1791 6 1 358
5© 73 1937 1977 23 44 393
6© 0 2000 1937 0 3 983
7© 7 2000 1987 0 1 1193
8© 0 1973 1963 0 0 390
9© 930 1998 1997 1311 1308 1808
10© 58 1152 1114 40 150 1340
11© 34 1990 1728 1500 1361 1764

Figure 2: Performance on each task at the end of training. Shown is the mean over
the last 50 episodes. Note that only methods on the right side of the table should
be considered approaches to continual learning. SER: Selective experience replay.
More results in the Appendix.

To make the benchmark more amenable to
researchers with limited computational re-
sources, we consider three tracks of the chal-
lenge. In its most difficult form, the campaign
has to be solved as a pure reinforcement learn-
ing (RL) problem. For the second and third
track, we provide expert agents that have
been pre-trained on each level. In-between
RL and supervised learning, the track two
objective is joint minimisation of the RL loss
while learning from a potentially sub-optimal
teacher by distillation. This significantly ac-
celerates learning as thoroughly discussed in
[31]. The third and simplest track relies on
distillation from provided experts alone.

The different tracks thus offer a somewhat
gradual shift between a pure RL task to a
supervised one, removing some of the com-
plexity of the underlying RL system (e.g. exploration).

4.2. Baseline results

We provide baseline results for the distillation-only track in Figure 2, with a computational budget of 150m steps per level.
As baseline methods, we compare sequential training without protection (Finetuning), Dropout [15] and SER, a method
based on replay of past data [6]. Note that we provide a fairly large replay buffer for SER, giving the algorithm a significant
advantage. This is mainly to demonstrate that continual learning is indeed possible.

Further insights into the behaviour of the algorithms is given in Figure 3. We observe that none of the baseline methods
achieve sufficient positive forward or backward transfer. Full learning curves are shown in the appendix.

Note that, when seen as a pure RL task, the campaign is extremely difficult3, where even in the multi-task regime it is
difficult to learn within a reasonable budget of frames. We see this as a potential challenge for future approaches. However,
given independently trained experts on each level, the challenge becomes significantly more accessible.

In future work, our intent is to explore all aspects of CL for many more approaches in a full variant of the manuscript. We
also intend to collate different measures used in practice and apply them across the different baselines. Additionally, we
believe there is potential to draw inspiration from related fields, both in terms of methods and evaluation. One particular
proposal comes meta-learning, where algorithms are often evaluated in few-shot settings. In contrast, current performance
on a past task is typically measured w.r.t to the current policy. A new metric might record the amount of data and learning
required to recover performance. Retraining on a previously seen tasks usually results in considerably faster learning. A
similar idea is used in [9]. We believe the proposed campaign offers an ideal environment to explore all these evaluations
and provide several ways of understanding the shortcomings and strengths of existing approaches.

3In worst case scenario up to 12b frames were required to train the experts
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Figure 3: Results highlighting model behaviour over the course of training on the full campaign. A definition of the metrics is provided
in the Appendix.

5. Discussion
In this work we propose a new benchmark for continual learning, designed as a campaign for StarCraft II, which offers a
natural way to explore the ability of an agent to remember and combine previously seen skills. We offer the problem in
multiple tracks, varying in scope and difficulty.

Finally we regard this abstract as being work in progress. We intend to use the provided challenge as a tool to better
understand proposed evaluation methods and plan on writing a full report describing our findings. We plan on releasing all
environment code necessary to test algorithms on the challenge and aim to also provide implementations for considered
baselines.
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Figure 4: Model architecture.

A. Baseline details
A.1. Reinforcement learning

As an agent architecture, we make use of the model in [32] which we found to be suitable for the targeted difficulty of each
level. We made use of identical hyperparameters to Tables 2 & 3 in [32], except for the trajectory unroll length, which
we set to 40. Agents were trained using advantage-actor-critic with off-policy correction [33]. We performed a search of
moderate size and report hyperparameters for task-specific experts in Table 2. All results are collected by actors dedicated to
acting on specific tasks over the course of training. Trajectories used for evaluation did not influence the agent’s learning
algorithm (i.e. no gradients were computed based on these observations). We approximate an agent’s performance on a
specific task by taking the mean over the last 50 episode rewards.

In order to ease the exploration problem, we restricted the action set to disallow invalid actions according to the game. As
an example, in case a certain building can only be placed nearby a specific resource, we mask actions corresponding to
attempts of creating the building on an invalid part of the map. Note that humans are given this information through the user
interface. All code necessary to use this restricted action set will be open-sourced.

To further reduce difficulty of the reinforcement learning problem, the campaign can be played from features (semantic
layers telling what type of object are at any possible position on the map) rather than pixels. For a detailed explanation, see
[34].

A.2. Continual learning algorithms

Selective experience replay [6] was used with the Global Distribution Matching selection strategy, aiming to maintain a
replay buffer matching the multi-task data distribution of tasks encountered thus far. As this method was mainly used to
showcase that progress on the challenge can be made with continual learning algorithms, we allowed for a relatively large
replay buffer, storing up to 150m frames (≈ 117,000 training examples assuming a batch size of 32 and unroll length of 40).
Each training batch was formed by mixing 50% of the the required size as examples from the buffer.

For Dropout [15], we used a dropout keep probability of p=0.8, only applied after linear layers and disabled during
evaluation.

No further design choices were introduced for Finetuning. For the distillation-only track, we train on each level for 150m
environment frames, acting according to the student policy.
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Level Learning rate Baseline cost Entropy cost Env. frames at checkpoint/
until convergence

1 5 · 10−5 0.01 5.0 500m/83m
2 5 · 10−5 0.01 5.0 15.7b/245m
3 5 · 10−5 0.01 0.5 2.6b/800m
4 5 · 10−5 0.01 5.0 5.5b/2b
5 1 · 10−4 0.01 0.1 6b/3.7b
6 5 · 10−5 0.01 0.5 1.3b/500m
7 5 · 10−5 0.01 5.0 10b/1.8b
8 5 · 10−5 0.1 0.5 16.5b/12b
9 5 · 10−5 0.01 0.5 15b/920m

10 1 · 10−4 0.01 0.5 -/6.5b
11 5 · 10−5 0.01 5.0 12b/3.8b

Table 2: Hyper-parameters for task-specific experts.

B. Metrics
In terms of metrics used to evaluate continual learning systems, we rely on the evaluation proposed in [3], who attempt
to capture the interplay between forgetting and forward transfer. Specifically, let rk,j ∈ [0, 1] denote the normalised (by
maximum performance) mean episode reward on task j at the end of training on task k.

A metric for the overall performance after training on tasks 1, . . . , k is then:

Rk =
1

k

k∑
j=1

rk,j (1)

As the authors of [3] note, this metric makes reasoning about forgetting and transfer difficult. Thus, additional metrics that
better capture positive and negative transfer on both and the current (forward transfer) and past tasks (backward transfer)
should be reported.

A measure of forward transfer is the difference between the reward achieved by a reference model (proposed to be given by
the Multi-Task performance) on task k and the current performance of the evaluated method:

Ik = r∗k − rk,k (2)

Note Ik ∈ [−1, 1]. This metric is refereed to as intransigence, defined to the observed inability of continual learning systems
to learn new tasks due to capacity issues. Thus, in the optimal setting have Ik = −1, meaning a method performs optimally
on a task that cannot be solved by a Multi-Task method. For a discussion on observed intransigence, see also [13].

Forgetting is defined as the difference between the maximum performance on a task obtained throughout the learning process
and its current performance:

fk
j = max

l∈1,...,k−1
rl,j − rk,j ,∀j < k (3)

Fk =
1

k − 1

k−1∑
j=1

fk
j (4)

As with intransigence, we have Fk ∈ [−1, 1]. Negative Fk corresponds to positive backward transfer, positive values
indicate forgetting.

C. Campaign description
All details of individual levels in the campaign are provided in Table 3.



Towards a natural benchmark for continual reinforcement learning

0 1 2 3 4 5
Environment frames 1e8

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

MoveToBeacon

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Environment frames 1e10

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

FindAndDefeatZerglings

0.0 0.5 1.0 1.5 2.0 2.5
Environment frames 1e9

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

GatherMinerals

0 1 2 3 4 5
Environment frames 1e9

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

GatherGas

0 1 2 3 4 5 6
Environment frames 1e9

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

BuildMarines

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment frames 1e9

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

BuildMarauders

0.0 0.2 0.4 0.6 0.8 1.0
Environment frames 1e10

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

GatherMineralsAndGas

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Environment frames 1e10

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

BuildArmy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment frames 1e10

0

500

1000

1500

2000
E
p
is

o
d
e
 r

e
w

a
rd

DefendAttackWave

0 1 2 3 4 5 6
Environment frames 1e9

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

FindEnemyBase

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment frames 1e10

0

500

1000

1500

2000

E
p
is

o
d
e
 r

e
w

a
rd

DestroyEnemyBase

Figure 5: Reward curves for task-specific experts. The green star indicates when a checkpoint was taken for the tracks of the challenge
involving distillation from an expert. Note that a varying number of environment frames (up to 16b) were required to train each expert.
An appropriate level of smoothing was applied independently for each task to improve clarity of the results.



Towards a natural benchmark for continual reinforcement learning

Time Enemy
Level limit Minerals Gas units Buildings Units Rewards

1: MoveToBeacon 2m 1 Marine 200 per Beacon

2: Find and defeat 3m20s 3 Marines 25 Zerglings 50 per Zergling
Zerglings (respawning)

3: Gather Minerals 1m50s 50 12 workers 2 Supply depots 2 per mineral
50 per worker

4: Gather Gas 3m 150 12 workers 4 per unit Gas
100 per refinery

5: Build Marines 7m30s 300 12 workers 180 per Marine
100 for barracks

100 for a supply depot

6: Build Marauders 8m 150 50 12 workers 3 Supply depots 300 per Marauder
Barracks 200 for Tech lab
Refinery

7: Gather Minerals 3m10s 75 12 workers 1 per mineral
and Gas 4 per unit Gas

8: Build Army 6m 600 75 12 workers 2 Supply depots 100 per Marine
Refinery 400 per Marauder

9: Defend Attack 5m 800 12 workers 8 Supply depots 4 Attack Proportional to
Waves 24 Marines Barracks waves damage dealt

5 Marauders

10: Find enemy 6m 800 24 workers 64 Zerglings Proportional to
Base 6 Marauders time remaining

11: Destroy enemy 14m 400 50 24 workers 2 Supply depots 8 Roaches Proportional to
Base 12 Marines Barracks 8 Mutalisk damage dealt

4 Marauders Refinery

Table 3: Full campaign description.



Towards a natural benchmark for continual reinforcement learning

Basic movement

Basic combat
Mineral collection

Build Supply Depots

Build Barracks Build Tech Lab

Create Marine Create Marauder

Build Refinery

Gas collection

Create Workers

Basic gameplay

Resources

Creating units

Build orders

I

II

V

VI

VI

V

V IV

IV
III

III

Figure 6: Skills graph.

C.1. Additional results

We provide additional results for the distillation-only in Figure ??. The figure shows the performance on each task over the
course of training. An interesting observation in the results is the presence of significant backward transfer. For instance, it
can be seen that the performance on "GatherMinerals" increases when the agent is learning task "GatherMineralsAndGas".
The same phenomenon is observed when acting on "BuildMarines", which requires mineral collection to afford the creation
of new units. Note that no task re-visits are allowed.

C.2. In-game screenshots

In-game screenshots are shown in figure 9
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Figure 9: Example in-game screenshots on levels 1, 4, 9 and 11. Best viewed on a computer..


