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Abstract

Standard artificial neural networks suffer from the well-known issue of catastrophic
forgetting, making continual or lifelong learning problematic. Recently, numerous
methods have been proposed for continual learning, but due to differences in
evaluation protocols it is difficult to directly compare their performance. To enable
more meaningful comparisons, we identified three distinct continual learning
scenarios based on whether task identity is known and, if it is not, whether it
needs to be inferred. Performing the split and permuted MNIST task protocols
according to each of these scenarios, we found that regularization-based approaches
(e.g., elastic weight consolidation) fail when task identity needs to be inferred. In
contrast, generative replay combined with distillation (i.e., using class probabilities
as “soft targets”) achieves superior performance in all three scenarios.

1 Introduction

When trained on a new task, deep neural networks tend to forget most information related to previously
learned tasks, a phenomenon referred to as “catastrophic forgetting”. In recent years, numerous
methods for alleviating catastrophic forgetting have been proposed. However, due to the wide variety
of experimental protocols used to evaluate them, many of these methods claim “state-of-the-art”
performance [1} 2 3,14, 5, 16]. To obscure things further, some methods shown to perform well in
some experimental settings are reported to dramatically fail in others: compare the performance of
elastic weight consolidation in [1]] and [[7] with that in [8] and [9].

To enable a fairer and more structured comparison of methods for reducing catastrophic forgetting,
this paper identifies three distinct continual learning scenarios of increasing difficulty. Using these
scenarios, we then perform a structured comparison of recently proposed methods for continual
learning. We find that the here identified scenarios can explain seemingly contradictory results from
the recent literature: even for experimental protocols involving the relatively simple classification of
MNIST-digits, methods that perform well in one scenario can completely fail in another.

2 Continual learning scenarios

We consider the continual learning problem in which a single model needs to sequentially learn
a series of tasks, whereby it is not allowed to store raw data. This continual learning framework
has been actively studied in recent years: many methods for alleviating catastrophic forgetting are
being proposed, with almost as many different experimental protocols being used for their evaluation.
We found that an important difference between these experimental protocols is whether at test time
information about the task identity is available and—if it is not—whether the model is required to
identify the identity of the task it has to solve. Yet, this crucial experimental design consideration is
not always clearly stated and differences in this regard are sometimes not appreciated. For example,
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Figure 1: Schematic of the split MNIST task protocol.

Table 1: The split MNIST task protocol according to each continual learning scenario.

Incremental task learning With task given, is it the first or second class? (e.g., ‘0’ or ‘1)

With task unknown, is it a first or second class?
(e.g" in [403’423"49"65’48a] or in [a]a,43”459"79,‘95])

Incremental class learning With task unknown, which digit is it? (choice from ‘0’ to ‘9°)

Incremental domain learning

in [4] a substantial improvement over state-of-the-art is reported, while their method assumes task
identity is always available and the compared methods operate without this assumption. To enable
more meaningful comparisons, we identify three distinct scenarios for continual learning.

In the first scenario, models are always informed about which task needs to be performed. This is
the easiest continual learning scenario, and we refer to it as incremental task learning. Since task
identity is always provided, it is possible to train models with task-specific components. A typical
neural network architecture used in this scenario has a “multihead” output-layer, meaning that each
task has its own output units but the rest of the network is (potentially) shared between tasks.

In the second scenario, which we refer to as incremental domain learning, task identity is not
available at test time. Models however only need to solve the task at hand; they are not required to
infer which task it is. Typical examples of this scenario are protocols whereby the structure of the
tasks is always the same, but the input-distribution is changing.

Finally, in the third scenario, models need to be able both to solve each task seen so far and to infer
which task they are presented with. We refer to this scenario as incremental class learning, as it
includes protocols in which new classes need to be learned incrementally.

Example task protocols To demonstrate the difference between these continual learning scenarios,
as well as to compare the performance of several recently proposed methods for continual learning,
we use two different task protocols and perform both of them according to all three scenarios. The
first task protocol is ‘split MNIST’ [[7], which is sequentially learning to classify MNIST-digits
(Figure[T} Appendix[A.T)). This task protocol is most naturally performed under the incremental class
learning scenario, but it has also been performed under the other two scenarios (Table|[I)). The second
task protocol is ‘permuted MNIST’ [10], in which each task involves classifying all ten MNIST-digits
but with a different permutation applied to the pixels for every new task (Figure 2} Appendix[A.T).
Again, although permuted MNIST is most naturally performed according to the incremental domain
learning scenario, it can be performed according to the other scenarios too (Table 2)).

3 Compared methods

Based on the insight that the reason for catastrophic forgetting is that after a neural network is trained
on a new task its parameters are optimized for the new task and no longer for the previous one(s),
methods for continual learning can be divided in two categories: (1) those that restrict the network’s
optimization when learning a new task, and (2) those that modify the training data to make it more
representative for previous tasks.

3.1 Not optimizing entire network / regularized optimization

A straightforward way of not optimizing the full network on every task is to explicitly define a different
sub-network for each task. Several recent papers use this strategy, with different approaches for
selecting the parts of the network for each task. A simple approach is to randomly and a priori assign
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Figure 2: Schematic of the permuted MNIST task protocol.

Table 2: The permuted MNIST task protocol according to each continual learning scenario.

Incremental task learning Given permutation X was applied, which digit is it?

Incremental domain learning  With permutation unknown, which digit is it?

Incremental class learning Which digit is it and which permutation was applied?

which nodes will participate in each task (Context-dependent Gating [XdG; 4l]). Other approaches
use evolutionary algorithms [[11] or gradient descent [[12] to learn which sets of units to employ for
each task. By design, however, these approaches are limited to the incremental task learning scenario,
as they require knowledge of task identity to select the correct task-specific components.

A modification to make this strategy applicable in the other scenarios is to preferentially train a
different part of the network for each task, but to always use the entire network for execution. One
way to do this is by differently regularizing the network’s parameters during training on each new task,
which is the approach of Elastic Weight Consolidation [EWC, Online EWC; (1, [13]] and Synaptic
Intelligence [SI; [7]. Both methods estimate for all parameters of the network how important they
are for the previously learned tasks and penalize future changes to them accordingly (i.e., learning is
slowed down for parts of the network important for previous tasks).

3.2 Modifying training data

A second strategy is to complement the training data for each new task to be learned with “pseudo-
data” representative of the previous tasks, which we refer to as replay. One option is to take the input
data of the current task, label them based on the predictions of the model trained on the previous tasks,
and use the resulting input-target pairs as pseudo-data. This is the approach of Learning without
Forgetting [LwF;[14]. Another important aspect of this method is that instead of labeling the inputs
to be replayed as the most likely category according to the previous tasks’ model (i.e., “hard targets”),
it pairs them with the by that model predicted probabilities for all target classes (i.e., “soft targets”).
The approach of matching predicted probabilities of one network to those of another network had
previously been used to compress (or “distill”’) information from one network to another [[15].

Another option is to generate the input data to be replayed. For this, besides the main model for task
performance (e.g., classification), a separate generative model is sequentially trained on all tasks to
generate samples from their input data distributions. For the first application of this approach, which
was called Deep Generative Replay [DGR], the generated input samples were paired with “hard
targets” provided by the main model [16]. We note that it is possible to combine LwF and DGR by
replaying input samples from a generative model and pairing them with soft targets [see also 6l [17].
We include this hybrid method in our comparison under the name DGR-+distill.

4 Results

We comprehensively compared the above discussed methods, by performing both the split and the
permuted MNIST task protocol according to each of the three continual learning scenarios (Tables [3]
and [} see Appendix [A]for implementation details). An important finding is that for the incremental
class learning scenario (i.e., when task identity needs to be inferred as well), the regularization-based
methods EWC, Online EWC and SI completely failed on both protocols. Only the replay-based
methods DGR and DGR+distill produced good results in this scenario. Also striking is that for the
split MNIST protocol, replaying images from the current task (LwF; e.g., replaying ‘2’s and ‘3’s in
order not to forget how to recognize ‘0’s and ‘1’s), prevented the forgetting of previous tasks better



Table 3: Average test accuracy (over all tasks) on the split MNIST task protocol. Each experiment
was performed 20 times with different random seeds, reported is the mean (&= SEM) over these runs.

Incremental Incremental Incremental
Method . . . .

task learning domain learning class learning
None — lower bound 85.15 (+ 1.00) 57.33 (£ 1.66) 19.90 (+ 0.02)
XdG 98.74 (£ 0.31) - -
EWC 85.48 (+ 1.20) 57.80 (£ 1.61) 19.90 (4 0.02)
Online EWC 85.22 (+ 1.06) 57.60 (£ 1.66) 19.90 (£ 0.02)
SI 99.14 (£ 0.11) 63.77 (£ 1.18) 20.04 (£ 0.08)
LwF 99.60 (£ 0.03) 71.02 (£ 1.26) 24.17 (£ 0.51)
DGR 99.47 (+ 0.03) 95.74 (£ 0.23) 91.24 (£ 0.33)
DGR-distill 99.59 (£ 0.03) 96.94 (+ 0.14) 91.84 (£ 0.27)

Offline — upper bound  99.64 (£ 0.03)

98.41 (£ 0.06)

97.93 (4 0.04)

Table 4: Idem as Table[3| except on the permuted MNIST task protocol.

Method

Incremental
task learning

Incremental

domain learning

Incremental
class learning

None - lower bound

81.79 (£ 0.48)

78.51 (£ 0.24)

17.26 (£ 0.19)

XdG 91.40 (& 0.23) - -

EWC 94.79 (+ 0.03) 94.43 (+ 0.10) 27.65 (£ 0.52)
Online EWC 96.09 (& 0.08) 94.25 (& 0.15) 34.41 (£ 0.66)
ST 94.75 (£ 0.14) 95.33 (£ 0.11) 29.31 (£ 0.62)
LwF 69.84 (& 0.46) 72.64 (& 0.52) 22.64 (+ 0.23)
DGR 92.52 (£ 0.08) 95.09 (£ 0.04) 92.19 (£ 0.09)
DGR-+distill 97.51 (& 0.01) 97.35 (£ 0.02) 96.38 (£ 0.03)
Offline — upper bound ~ 97.68 (& 0.01) 97.59 (£ 0.01) 97.59 (£ 0.02)

than EWC or SI. On the split MNIST protocol, EWC and online EWC actually did not prevent against
catastrophic forgetting at all. We hypothesize that this is because the individual tasks of this protocol
(distinguishing between 2 digits) are relatively easy, making that after finishing training on each task
the gradients—and thus the Fisher Information—rely on very few errors.

5 Discussion

Catastrophic forgetting is a major obstacle to developing artificial intelligence applications capable of
true lifelong learning [18 [19]], and enabling neural networks to sequentially learn multiple tasks has
become a topic of intense research. Despite its scope, this research field lacks common benchmarks
(even when the same datasets are used), making direct comparisons between published methods
difficult. The three scenarios identified here aim to make the continual learning field more structured.
Although they were illustrated here only for supervised learning, these scenarios are also applicable
for unsupervised or reinforcement learning.

The most challenging continual learning scenario is incremental class learning. Even for relatively
simple task protocols involving the classification of MNIST-digits, regularization-based methods
such as EWC and SI completely fail when task identity needs to be inferred as well. Only generative
replay is capable of performing well in this scenario. We hypothesize that the difficulty is that a
network needs to learn to distinguish classes that it never observes together, and that generative replay
overcomes this by enabling a network to instead observe generated examples of all classes together.

A limitation of the current study is that MNIST-images are relatively easy to generate. It therefore
remains an open question whether generative replay will still be so successful for task protocols with
more complicated input distributions. An alternative / complement to generative replay could be to
store examples from previous tasks and replay those. Due to privacy concerns or memory constraints



this is however not always possible, but when it is it can substantially boost performance [2} 3} 15} see
Appendix [C]|. See also [20] for a discussion of the scalability of generative replay.
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A Additional experimental details

PyTorch-code that can be used to perform the experiments described in this paper is available online:
https://github.com/GMvandeVen/continual-learning,.

A.1 Task protocols

For the split MNIST task protocol [[7] (Figure[I), the original MNIST-dataset was split into five tasks,
where each task was a two digit classification. The original 28x28 pixel grey-scale images were used

without pre-processing. The standard training/test-split was used resulting in 60,000 training images
(~6000 per digit) and 10,000 test images (~1000 per digit).

For the permuted MNIST task protocol [10] (Figure[2), the tasks were classifying MNIST-digits (every
task now had all ten digits), whereby in each task the pixels of the MNIST-images were permutated
in a different way. We used a sequence of ten such tasks. To generate the permutated images, the
original images were first zero-padded to 32x32 pixels. For each task, a random permutation was
then generated and applied to these 1024 pixels. No other pre-processing was performed. Again the
standard training/test-split was used.

A.2 Methods

For a fair comparison, the same neural network architecture was used for all methods. For the split
MNIST experiments, this was a multi-layer perceptron with 2 hidden layers of 400 nodes each,
followed by a softmax output layer. ReLU non-linearities were used in all hidden layers. For the
permuted MNIST experiments each hidden layer consisted of 1000 nodes.

All methods used the standard cross entropy classification loss for the model’s predictions on the
current task (Leurrent = Lelassifications se€ Appendix [A.3.T). The regularization-based methods (i.e.,
EWC, online EWC and SI) added a regularization term to this loss, with regularization strength
controlled by a hyperparameter: Lioul = Leurrent + ALregularization- The value of this hyperparameter
was set by a grid search, even though it could be argued that this is problematic in the context of
continual learning (see Appendix [B). The replay-based methods (i.e., LWF, DGR and DGR+distill)
instead added a loss-term for the replayed data. In this case a hyperparameter could be avoided, as
the loss for the current and replayed data could be weighted according to how many tasks the model

has been trained on so far: Lo = Leurent + (1 — ;)Ereplay.

Niasks so far Niasks so far

We compared the following approaches:

- None: The model was sequentially trained on all tasks in the standard way. This is also called
fine-tuning, and can be seen as a lower bound.

- XdG: Following Masse et al. [4], for each task a random subset of X % of the units in each hidden
layer was fully gated (i.e., their activations set to zero), with X a hyperparameter whose
value was set by a grid search (see Appendix [B)). As this method requires availability of task
identity at test time, it could only be used in the incremental task learning scenario.

- EWC: The regularization term proposed in Kirkpatrick et al. [[1]] was added to the loss, see
Appendix [A.4.T|for implementation details.

- Online EWC: This is a modification of EWC proposed by Schwarz et al. [[13], with inspiration
from Huszar [21]], that improves EWC’s scalability by ensuring the computational cost of
the regularization term does not grow with number of tasks (see Appendix[A.4.2).

- SI: The regularization proposed in Zenke et al. [7] was added to the loss (see Appendix [A.4.3).

- LwF: Images of the current task were replayed with soft targets provided by a copy of the model
stored after finishing training on the previous task [14] (see Appendix[A.3.2).

- DGR: A separate generative model was trained to generate the images to be replayed. Following
Shin et al. [[16]], the replayed images were labeled with the most likely category predicted by
a copy of the main model stored after training on the previous task (i.e., hard targets).

- DGR+distill: A separate generative model was trained to generate the images to be replayed, but
these were then paired with soft targets (as in LwF) instead of hard targets (as in DGR).
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- Offline: The model was always trained using the data of all tasks so far. This is also called joint
training, and was included as it can be seen as an upper bound.

For the split MNIST protocol, all models were trained for 2000 iterations per task using the ADAM-
optimizer (51 = 0.9, B2 = 0.999; 22) with learning rate 0.001. The same optimizer was used for
the permuted MNIST protocol, but with 5000 iterations and learning rate 0.0001. For each iteration,
Lecurrent (and Liegularization) Was calculated as average over 128 examples from the current task and—if
replay was used—an additional 128 replayed examples (equally divided over all previous tasks) were
used to calculate Lreplay. Importantly, since the total number of replayed examples does not depend
on the number of previous tasks, for our implementation of the replay-based methods the training
time per task does not need to increase with number of tasks so far.

For DGR and DGR+distill, a separate generative model was sequentially trained on all tasks. A
symmetric variational autoencoder [VAE; 23] was used as generative model, with 2 fully connected
hidden layers of 400 (split MNIST) or 1000 (permuted MNIST) units and a stochastic latent variable
layer of size 100. A standard normal distribution was used as prior. See Appendix [A.3.3|for more
details. Training of the generative model was also done with generative replay (provided by its own
copy stored after finishing training on the previous task) and with the same hyperparameters (i.e.,
learning rate, optimizer, iterations, batch sizes) as for the main model.

A.3 Loss functions

A.3.1 Classification

The standard per-sample cross entropy loss function for an input x labeled with a hard target y is
given by:
Llassification (33, Y; 0) = —logpe (Y = y|w) 1

where pg is the conditional probability distribution defined by the neural network whose trainable
bias and weight parameters are collected in 8. An important note is that in this paper this probability
distribution is not always defined over all output nodes of the network, but only over the “active
nodes”. This means that the normalization performed by the final softmax layer only takes into
account these active nodes, and that learning is thus restricted to those nodes. For experiments
performed according to the incremental task learning scenario, for which we use a “multihead”
softmax layer, always only the nodes of the task under consideration are active. Typically this is the
current task, but for replayed data it is the task that is (intended to be) replayed. For the incremental
domain learning scenario always all nodes are active. For the incremental class learning scenario, the
nodes of all tasks seen so far are active, both when training on current and on replayed data.

For the method DGR, there are also some subtle differences between the continual learning scenarios
when generating hard targets for the inputs to be replayed. With the incremental task learning scenario,
only the classes of the task that is intended to be replayed can be predicted (in each iteration the
available replays are equally divided over the previous tasks). With the incremental domain learning
scenario always all classes can be predicted. With the incremental class learning scenario only classes
from up to the previous task can be predicted.

A.3.2 Distillation

The methods LwF and DGR+distill use distillation loss for their replayed data. For this, each input x
to be replayed is labeled with a “soft target”, which is a vector containing a probability for each active
class. This target probability vector is obtained using a copy of the main model stored after finishing
training on the most recent task, and the training objective is to match the probabilities predicted by
the model being trained to these target probabilities (by minimizing the cross entropy between them).
Moreover, as is common for distillation, these two probability distributions that we want to match are
made softer by temporary raising the temperature 7" of their models’ softmax layersE] This means
that before the softmax normalization is performed on the logits, these logits are first divided by 7.
For an input x to be replayed during training of task I, the soft targets are given by the vector y

>The same temperature should be used for calculating the target probabilities and for calculating the
probabilities to be matched during training; but during testing the temperature should be set back to 1. A typical
value for this temperature is 2, which is the value used in this paper.



whose i element is given by:

Ui = Py (Y = i) )
where (5 —1) is the vector with parameter values at the end of training of task K — 1 and p is the
conditional probability distribution defined by the neural network with parameters 8 and with the
temperature of its softmax layer raised to 7'. The distillation loss function for an input & labeled with
a soft target vector g is then given by:

Netasses
Laistitation (¢, Y3 0) = —T? Z gilogpg (Y = ilz) 3)
i=1
where the scaling by 72 is included to ensure that the relative contribution of this objective matches
that of a comparable objective with hard targets [15].

When generating soft targets for the inputs to be replayed, there are again subtle differences between
the three continual learning scenarios. With the incremental task learning scenario, the soft target
probability distribution is defined only over the classes of the task intended to be replayed. With the
incremental domain learning scenario this distribution is always over all classes. With the incremental
class learning scenario, the soft target probability distribution is first generated only over the classes
from up to the previous task and then zero probabilities are added for all classes in the current task.

A.3.3 Symmetrical VAE

The separate generative model that is used for DGR and DGR+distill is a variational autoencoder
[VAE; 23], of which both the encoder network g4 and the decoder network p,, are multi-layer
perceptrons with 2 hidden layers containing 400 (split MNIST) or 1000 (permuted MNIST) units
with ReLU non-linearity. The stochastic latent variable layer z has 100 units and the prior over
them is the standard normal distribution. Following Kingma and Welling [23]], the “latent variable
regularization term” of this VAE is given by:

1~ @) @) %
Cuent ) = 33 (14108 ((o17) ) = (1) - (7)) @

Jj=1

whereby ug-w) and a§m) are the j™ elements of respectively p(*) and o (®), which are the outputs

of the encoder network g¢¢ given input x. Following Doersch [24], the output layer of the decoder
network p,, has a sigmoid non-linearity and the “reconstruction term” is given by the binary cross
entropy between the original and decoded pixel values:

Npixels

Leecon (@50, 9) = Y wilog (&) + (1 — 2:) log (1 — &) ©)
=1

whereby x; is the value of the i pixel of the original input image = and Z; is the value of the i
pixel of the decoded image & = py, (2(®)) with 2(®) = p(® + (@) . €, whereby € is sampled from
N (0, I1gp). The per-sample VAE loss for an input x is then given by [23]:

Egenerative (CL‘; o, ¢) = Lrecon (33; ?, "/") + Liaent (ZE; d)) (6)
A.4 Regularization terms

A41 EWC

The regularization term of elastic weight consolidation [EWC; (1] consists of a quadratic penalty term
for each previously learned task, whereby each task’s term penalizes the parameters for how different
they are compared to their value directly after finishing training on that task. The strength of each
parameter’s penalty depends for every task on how important that parameter was estimated to be for
that task, with higher penalties for more important parameters. For EWC, a parameter’s importance
is estimated for each task by the parameter’s corresponding diagonal element of that task’s Fisher
Information matrix, evaluated at the optimal parameter values after finishing training on that task.
The EWC regularization term for task K > 1 is given by:
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whereby é§k> is the i element of (%), which is the vector with parameter values at the end of training
of task k, and Fi(ik) is the 7™ diagonal element of F'¥), which is the Fisher Information matrix of task
k evaluated at 6%, Following the definitions and notation in Martens [25]], the it diagonal element

of F(¥) is defined as:
E dlogpe (Y = ylz)\”
po (y|x) 691‘

whereby Q(mk) is the (theoretical) input distribution of task & and pg is the conditional distribution
defined by the neural network with parameters 8. Note that in Kirkpatrick et al. [1] it is not specified
exactly how these Fz(lk) are calculated (except that it is said to be “easy”); but we have been made
aware that they are calculated as the diagonal elements of the “true Fisher Information”:
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whereby S(®) is the training data of task &k and I = arg min, log pg, (Y = ylx), the label

©))

predicted by the model with parameters o) given :c The calculation of the Fisher Information
is time-consuming, especially if tasks have a lot of training data. In practice it might therefore
sometimes be beneficial to trade accuracy for speed by using only a subset of a task’s training data for
this calculation (e.g., by introducing another hyperparameter Ngigher that sets the maximum number
of samples to be used in equation [J).

A.4.2 Online EWC

A disadvantage of the original formulation of EWC is that the number of quadratic terms in its
regularization term grows linearly with the number of tasks. This is an important limitation, as
for a method to be applicable in a true lifelong learning setting its computational cost should not
increase with the number of tasks seen so far. It was pointed out by Huszér [21] that a slightly stricter
adherence to the approximate Bayesian treatment of continual learning, which had been used as
motivation for EWC, actually results in only a single quadratic penalty term on the parameters that is
anchored at the optimal parameters after the most recent task and with the weight of the parameters’
penalties determined by a running sum of the previous tasks’ Fisher Information matrices. This
insight was adopted by Schwarz et al. [[13]], who proposed a modification to EWC called online EWC.
The regularization term of online EWC when training on task K > 1 is given by:
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whereby éEK_l) is the value of parameter ¢ after finishing training on task X — 1 and E&K_l) isa
running sum of the i diagonal elements of the Fisher Information matrices of the first K — 1 tasks,
with a hyperparameter v < 1 that governs a gradual decay of each previous task’s contribution. That
is: Fi(ik) = ’yﬁ'i(ik_l) + Fi(ik), with Fi(il) = Fi(il) and F Z.(ik) is the i diagonal element of the Fisher
Information matrix of task k calculated according to equation 9}

A43 SI

Similar as for online EWC, the regularization term of synaptic intelligence [SI; (7] consists of only one
quadratic term that penalizes changes to parameters away from their values after finishing training on

3 An alternative way to calculate Fl-(,ik) would be, instead of taking for each training input « only the most
likely label predicted by model pgx) , to sample for each & multiple labels from the entire conditional distribution
defined by this model (i.e., to approximate the inner expectation of equation|8]for each training sample = with

Monte Carlo sampling from pgx) (-|)). Another option is to use the “empirical Fisher Information", by
replacing in equation E] the predicted label QC(DM by the observed label y. The results reported in Tables [3|and E]
do not depend much on the choice of how to calculate Fi(ik).
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the previous task, with the strength of each parameter’s penalty depending on how important that
parameter is thought to be for the tasks learned so far. To estimate parameters’ importance, for every
new task k a per-parameter contribution to the change of the loss is first calculated for each parameter
1 as follows:

Nilers o (k})
w =" (Gi[t(k)] —0:(t - 1)(k)]) M%M (11)
t=1 i

with Njers the total number of iterations per task, 6;[t(*)] the value of the i parameter after the ™

L . alt®) . . .
training iteration on task k and M%g[?] the gradient of the loss with respect to the i parameter

during the " training iteration on task k. For every task, these per-parameter contributions are
normalized by the square of the total change of that parameter during training on that task plus a small
dampening term & (set to 0.1, to bound the resulting normalized contributions when a parameter’s total
change goes to zero), after which they are summed over all tasks so far. The estimated importance of
parameter ¢ for the first K — 1 tasks is thus given by:

(k)

Z (12)

k:l( Z(k)) + &

with Agk 0:[ Niters ] — 0;[0%)], where 6;[0%)] indicates the value of parameter i right before
starting training on task k. (An alternative formulation is Agk) = Gz(k) - 9§k Y with 95 ) the value

of parameter ¢ it was initialized with and éfk) its value after finishing training on task k.) The
regularization term of SI to be used during training on task K is then given by:

params
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B Hyperparameters

As discussed in Section [A.2] and Appendix [A.4] several of the in this paper compared continual
learning methods have one or more hyperparameters. The typical way of setting the value of
hyperparameters is by training models on the training set for a range of hyperparameter-values,
and selecting those that result in the best performance on a separate validation set. This strategy
has been adapted to the continual learning setting as training models on the full protocol with
different hyperparameter-values using only every task’s training data, and comparing their overall
performances using separate validation sets (or sometimes the test sets) for each task [e.g., see
10, 14184 [13]]. However, here we would like to stress that this means that these hyperparameters are set
(or learned) based on an evaluation using data from all tasks, which violates the continual learning
principle of only being allowed to visit each task once and in sequence. Although it is tempting to
think that it is acceptable to relax this principle for tasks’ validation data, we argue here that it is not.
A clear example of how using each task’s validation data continuously throughout an incremental
training protocol can lead to an in our opinion unfair advantage is provided by Wu et al. [6], in which
after finishing training on each task a “bias-removal parameter” is set that optimizes performance on
the validation sets of all tasks seen so far (see their Section 3.3). Although the hyperparameters of
the methods compared here are much less influential than those in the above paper, we believe that
it is important to realize this issue associated with traditional grid searches in a continual learning
setting and that at a minimum influential hyperparameters should be avoided in methods for continual
learning.

Nevertheless, to give each method the best possible chance—and to explore how influential their
hyperparameters are—we do perform grid searches to set the values of their hyperparameters (see
Figures [3|and ). Given the issue discussed above we do not see much value in using validation sets
for this, and we evaluate the performances of all hyperparameter(-combination)s using the tasks’ test
sets. For this grid search each experiment is run once, after which 20 new runs are executed using the
selected hyperparameter-values to obtain the results in Tables 3] and [4]
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Figure 3: Grid searches for the split MNIST task protocol. Shown are the average test set accuracies
(over all 5 tasks) for the (combination of) hyperparameter-values tested for each method.
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Figure 4: Grid searches for the permuted MNIST task protocol. Shown are the average test set
accuracies (over all 10 tasks) for the (combination of) hyperparameter-values tested for each method.
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C Additional discussion: storing data

In the current paper, based on the argument that storing data is not always possible due to privacy
concerns or memory constraints, we only considered methods that do not store data. However, as
indicated by methods such as iCaRL [2]] and FearNet S]], when possible, storing data can substantially
boost performance, especially in the incremental class learning scenario. Of particular note is that
these two methods point out that it is not necessary that all of the original data is stored permanently.
Indeed, iCaRL demonstrates that storing a relatively small number of well-chosen examples can
be helpful, while FearNet’s good performance seems to suggest that temporary storage of data can
already be useful. Both these reductionist approaches to storing data of course reduce memory storage
demands. Finally, an interesting aspect of FearNet is that it also stores hidden summary statistics.
The idea of storing hidden representations, which besides reducing memory storage demands could
also address the privacy issue, is further worked out by Riemer et al. [26]]. We expect that the sparse
and/or temporary storage of hidden representations could be a useful complement to generative replay,
which might help it to scale up to real-world continual learning problems. However, we want to stress
that when allowing the storage of data, it is important to take extra care to ensure fair comparisons
between methods (i.e., that they all have the same rules regarding to how much, for how long and
what data can be stored).
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