Exploring Continual Learning Using Incremental
Architecture Search

Shenyang Huang!, Vincent Francois-Lavet!, Guillaume Rabusseau?, Joelle Pineau'

shenyang.huang @mail.mcgill.ca, vincent.francois-lavet@mcgill.ca, guillaume.rabusseau @umontreal.ca, joelle.pineau @mcgill.ca
RL lab, McGill University, Montreal, Canada'
Université de Montreal, Montreal, Canada?

Abstract

The emerging paradigm of continual learning requires a machine learning model to
acquire new information continuously while retaining existing knowledge. In this
work, we focus on class-incremental learning where new classes of the same dataset
arrive sequentially. We combine network transformation techniques with automatic
neural architecture design approach to develop a new method for class-incremental
learning: incremental architecture search (IAS). When a new image class arrives,
IAS selects competitive architectures based on the best model from the previous
step thus avoiding the computational cost to sample many potential architectures
from scratch. IAS shows promising results in image classification tasks on the
MNIST and Fashion-MNIST datasets when compared with directly training on all
available classes from a random initialization. Our experiments also show that the
changes in learning task caused by the arrival of a new class have different effects
on individual classes.

1 Introduction

As an important step towards artificial intelligence, a machine learning model must be able to
accommodate new information while retaining previous knowledge: this ability is referred to as
continual lifelong learning [1]]. In this work, we focus on class-incremental learning where new
classes are introduced sequentially [3]. To adapt neural networks to this setting, we present a
dynamic architecture approach: Incremental Architecture Search (IAS). IAS accommodates new
classes into the model and increases the model capacity as new classes arrive. However, catastrophic
forgetting or catastrophic interference remains a major challenge for any model aiming to tackle the
continual learning problem [2]. Catastrophic forgetting refers to the phenomenon where learning new
information interferes with existing knowledge. To minimize this effect, we continually train our
model with past data when new information is introduced.

The source code for IAS is available at https://github. com/shenyangHuang/IAS,

1.1 Class-incremental learning

In class-incremental learning, the difficulty of the learning task increases sequentially as each new
class arrives. In addition, factors such as the arrival order of the classes, the initial classes known
as base knowledge and the number of new classes introduced at each step all change the learning
task. In this work, we provide all training data from one new class to the model at each step and the
arrival order is determined by the default dataset classification labels such as the incremental order
from digit O to 9 in MNIST handwritten digit dataset [8]]. In Section [3] we observe that the change in
learning task caused by the arrival of a new class has different effects on individual classes.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.


https://github.com/shenyangHuang/IAS

1.2 Net2Net and automatic architecture design

In 2015, Chen et al. [4] proposed Net2Net techniques to enable a rapid transfer of information from
one neural network to another. More specifically, Net2WiderNet allows one to widen layers of the
network (by expanding existing hidden layers with additional neurons) and Net2DeeperNet allows
one to deepen a network (by adding new identity layers). Both transformations preserve the function
computed by the neural network. Cai et al. [5] proposed a new framework for efficient architecture
search by exploring the architecture space based on the current network and reusing its weights.
Similarly, we combine Net2WiderNet and Net2DeeperNet to sample new neural architectures without
having to retrain the network from scratch using a random initialization. In Section[2] we discuss
how automatic neural architecture design is leveraged in IAS. In Appendix [A] we also explain how
IAS naturally tackles the capacity saturation problem in continual learning.

Mendoza et al. [[6] discussed the concept of AutoML which aims to provide efficient and off-
the-shelf learning systems that avoid the tedious tasks of manually selecting the right algorithm,
hyperparameters and neural architecture. In IAS, only the hyperparameters and architecture for the
base knowledge need to be manually selected (such as the initial architecture and learning rate).
These choices only concern a single and shallow model in contrast to a naive approach of picking a
new architecture for each incremental step (and at later steps, the architecture search space would
become increasingly large). Therefore, IAS can be seen as a case of AutoML for class-incremental
learning because the number of hyperparameters and architectures that need to be manually selected
are greatly reduced.

2 Methodology

Past approaches that utilized neural networks for class-incremental learning prevented catastrophic
forgetting by withholding or limiting the modification of network weights on previous tasks. One
example is reinforced continual learning (RCL) proposed by Xu et al. [7], a novel approach that
achieves image classifications by freezing network weights for previous tasks and only training newly
added filters. In contrast to RCL, training procedure in IAS adjusts all weights of the network and
employs Net2Net techniques to enlarge the current architecture.

2.1 Incremental architecture search

Incremental architecture search (IAS) describes a general | |
algorithm that expands the current model when a new class
arrives. A flow chart of IAS can be seen in Figure

Once data for a new class arrives, one neuron is added to |

the output layer. In IAS, we use softmax activation funcion

for the output layer while all previous layers use ReLU ac- |

tivation function. The training performance thus instantly |

decreases due to random predictions for samples from this

new class. Before automatic architecture search, the cur- |
|
|

rent model is first trained with all available data (including
the newly arrived class) using early stopping (training is
terminated only when the validation loss stops improv-
ing for 20 epochs). This ensures that any increase in the ‘
performance of a sampled architecture is only caused by
the improvement in neural architecture (and not by Simply Figure 1: Flow chart of incremental architecture search
learning to discriminate the new classes). To limit the cost

of automatic architecture search, IAS samples 6 new architectures based on selected guidelines that
consist of several Net2Net transformations that are likely to improve the performance ( and these
guidelines are listed in Appendix [C). The weights in each sample architecture is transferred using
Net2Net techniques from the current model and then trained for 20 epochs on all available data.
We use the average validation accuracy across all classes to select the best architecture. After the
search, the newly selected model is trained with all available data using early stopping (with the same
stopping criteria as before). The above steps are repeated each time a new class arrives.




2.2 Data Preprocessing

If the entire dataset is given at once, it is possible to utilize data normalization methods that involve
statistical information of the dataset such as mean p or standard deviation o2. However, to avoid
any bias towards the distribution of unseen images, we simply normalize each pixel value x into
(x/128 — 1) thus effectively rescaling them into the range [—1, 1]. When the data for a new class
arrives, it is split into 10% validation set and 90% training set.

2.3 Output layer transformation

The softmax function captures a categorical dis-

tribution and is often used as the output layer

activation function for classification tasks. Each

class has an associated probability that is repre- :>

sented by a specific output neuron. In a class-

incremental learning setting, the model has no Ui Rimdit
knowledge on the number of unseen categories.

Therefore, assuming there are £ number of seen  MiddenLaver  Ouput Layer
classes, the output layer contains exactly £ neu-
rons. When a new class is introduced in the
dataset, we need to add one additional neuron in the output layer to represent the (¢ + 1)-th class.
This process is illustrated in Figureg} We initialize the new weights with a normal distribution of
mean g = 0 and standard deviation 0“ = 0.35 while the new bias term is set to 0. Further discussion
can be seen in Appendix [B]

Hidden Layer  Output Layer

Figure 2: Add one output neuron when a new class arrives.

3 Experiments

MNIST DATSET PERFORMANCE COMPARISON

_0.9943
0.9954 0.9932

3.1 Baseline

0.9923 —o— s
0.99 =@ Random initialization

0991 0.9883 Fixed architecture

‘We consider two baselines. First, we use a fixed
MLP architecture with 2 hidden layers of 256
neurons each and it is referred as fixed architec-
ture in Figure [3|and [f] (this architecture achieves
competitive test accuracies for a multilayer per-
ceptron learner on both MNIST and Fashion-
MNIST dataset if trained with all 10 classes).
Second, at each step, we also train a neural net-
work from scratch with a random initialization

using the neural architecture selected by TAS N T
and we call it random initialization. All models NUMBER OF CLASSES

are trained using the RMSPTOP baCkpropagaUOH Figure 3: Performance comparison between IAS, fixed architecture and
algorithm [10] with a leaming rate of 0.0001. random initialization when learning MNIST dataset incrementally.

0.985 0.9842

0.9826 _ 0.9826

0.98 -

0.9758
0.975
0.9749

0.9741
0.97 -

AVERAGE INCREMENTAL ACCURACY

0.965 -
0.9667

3.2 MNIST performance

Our MNIST experiment starts with 2 initial classes: digits O and 1, the remaining 8 classes are
provided one at a time and can be seen in Appendix [E} Figure [3] shows the average incremental
accuracy [3] at each class-incremental learning step (average test accuracy across all seen classes),
averaged over three trials of the experiment. As the figure suggests, IAS performs comparatively
to both random initialization and fixed architecture. It is worth noting that IAS starts with a small
initial architecture of 1 hidden layer with 16 neurons. As more classes are introduced, the architecture
evolution of IAS leads to a competitive architecture with 2 hidden layers. The detailed architecture
evolution can be found in Appendix [D] The shaded bands in Figure [3] ] and [5] are standard deviations
measured from three distinct trials.

3.3 MNIST and Fashion-MNIST

To investigate the scenario where two different datasets are learned incrementally, we design an
experiment where all 10 MNIST classes are learned as base knowledge and one new Fashion-MNIST



class is introduced at each step of the class-incremental learning setting. The arrival order of classes
can be seen in Appendix [E] The Fashion-MNIST dataset is designed to be a drop-in replacement for
the MNIST dataset thus no image resizing is necessary [9].

Figure E] shows the average incremental accu- MNIST and FASHION-MNIST INCREMENTAL LEARNING PERFORMANCE COMPARISON
racy over three trials. Both IAS and fixed ar- ——us

h’t t t rf d th d 1 ’t' 1 0.98 L0.Z54. gjgg 88783 +?§2‘ZT,JEJ.':’JZ?2""
chitecture outperrorme € random 1nitializa- e w;aﬁa 00672

tion baseline model which uses the same archi-
tecture as IAS. Notice that IAS and fixed ar-
chitecture transfer weights from previous steps
thus one possible reason for this observation is
the positive forward transfer effect described by
Lopez-Paz et al. [11]. We also observe that the
performance of IAS are consistent with fixed
architecture in earlier steps while in later steps,
fixed architecture outperforms IAS. This could 088 ———* T T e

be attributed to the fact that Net2Net transfor- NUMBER OF CLASSES

mations OIlly enlarge existing models thus TIAS Figure 4: Performance comparison between IAS, fixed architecture and

migcht hav mpl nn 1lv 1 m 1 random initialization baseline during incremental learning experiment
. ght have samp ed unnecessar ylarge odels of MNIST and Fashion-MNIST classes.
in later steps.

0.9187 0.9201

AVERAGE INCREMENTAL ACCURACY

PERFORMANCE OF INDIVIDUAL CLASSES
1 9898 9897

Figure [5] shows the average test accuracies of
MNIST digit 0,1,2 and Fashion-MNIST class
0,1,2 from 3 independent IAS trials. When more
Fashion-MNIST classes are introduced, the test
accuracies on MNIST classes are only affected
to a limited extent (a more detailed figure can be
seen in Appendix [F). However, the decrease in
average incremental accuracy seen in Figure 4]
is mostly caused by the decrease in performance
of Fashion-MNIST classes. For example, in Fig-
ure 5] classes such as Fashion-MNIST class 0
and 2 have a more severe drop in test acccuracy o7 . ‘ . ‘ , ‘
compared to the MNIST digit 0,1,2. Thus, the " 12 18 NUMB‘E“R oF CS’\SSES 16 7 18
change in learning task induced by the intro- N '
duction of a new class can have very diffrent S, 0 o o NNIST it 0120 i st
effects on the performance of individual classes. Fashion-MNIST dataset

® - Digit 1
Digit 2
®— Fashion 0
Fashion 1
—@— Fashion 2
5]

0.95 -

TEST ACCURACY
& o
a ©

o
=)

0.75

4 Discussion

From the incremental learning experiment involving both MNIST and Fashion-MNIST dataset, we
showed that performance on individual classes react differently to a change in learning task. Future
research can further investigate this effect and develop more dynamic methods to account for any
change in learning task. Next, IAS can be adapted for convolutional neural networks (CNN) as
Net2Net can be easily adapted to CNNs. This will enable IAS to take on more challenging image
classification tasks such as CIFAR-10 [12] and ImageNet [13]. In addition, novel approaches in
architecture design such as the inclusion of a reinforcement learning meta controller [7] can improve
and replace the current heuristics approach.

5 Conclusion

In this paper, we presented IAS, a new framework to explore continual learning. With the use of
Net2Net techniques, it is possible for a trained neural network to transfer knowledge to another
network. In this way, a neural network can continue to expand and adapt to newer tasks. IAS
efficiently samples new architectures at each step by starting from the best architecture from the
previous step. Experiments with MNIST and Fashion-MNIST dataset have shown that learning
incrementally can be as competitive as retraining a network from scratch with a random initialization.
We also observed that the change in learning task during class-incremental learning has different
effects on individual classes and we provided some insights related to this phenomenon.



References

[1] Parisi, G.I. & Kemker, R. & Part, J.L.. & Kanan, Christopher & Wermter, S. (2018) Continual Lifelong
Learning with Neural Networks: A Review. arXiv:1802.07569v2 [cs.LG]

[2] McCloskey, M. & Cohen, N.J. (1989) Catastrophic interference in connectionist networks: The sequential
learning problem. The Psychology of Learning and Motivation, 24:104-169.

[3] Rebuffi, S. & Kolesnikov, A. & Sperl, G. & Lampert, C.H. (2016) iCaRL: Incremental Classifier and
Representation Learning. arXiv:1611.07725v2 [cs.CV]

[4] Chen, T. & Goodfellow, I. & Shlens, J. (2016) Net2Net: Accelerating Learning Via Knowledge Transfer.
arXiv:1511.05641v4 [cs.LG]

[5] Cai, H. & Chen, T. & Zhang, W. & Yu, Y. & Wang, J. (2017) Neural Architecture Search with Reinforce-
ment Learning. arXiv:1707.04873v2 [cs.LG]

[6] Mendoza, H. & Klein, A. & Feurer, M. & Springenberg, J.T. & Hutter, F. (2016) Towards Automatically-
Tuned Neural Networks. Proceedings of the Workshop on Automatic Machine Learning, PMLR 64:58-65,
2016.

[7] Xu,J. & Zhu, Z. (2018) Reinforced Continual Learning. arXiv:1805.12369 [cs.LG]

[8] LeCun, Y. & Bottou, L. & Bengio, Y. & Haffner, P. (1998) Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998

[9] Xiao, H. & Rasul, K. & Vollgraf, R. (2017) Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747v2 [cs.LG]

[10] Hinton, G. & Srivastava, N. & Swersky, K. (2014) Overview of mini-batch gradient descent. http:
//www.cs.toronto.edu/"tijmen/csc321/slides/lecture_slides_lec6.pdf

[11] Lopez-Paz, D. & Ranzato, M. (2017) Gradient Episodic Memory for Continual Learning.
arXiv:1706.08840v5 [cs.LG]

[12] Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny Images. https://www.cs!
toronto.edu/"kriz/learning-features-2009-TR.pdf

[13] Deng, J. & Dong, W. & Socher, R. & Li, L.J. & Li, K. & Li, EE. (2009) ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR

[14] Sodhani, S. & Chandar, S. & Bengio, Y. (2018) On Training Recurrent Neural Networks for Lifelong
Learning. arXiv:1811.07017

Appendix A Capacity Saturation

Class-incremental learning also has the issue of capacity saturation where after a certain number of classes
are introduced, a static deep learning architecture will reach its maximum learning capacity. Recent work
by Sodhani et al. [14] pointed out that a continual learning agent needs to have expansion property so that
the capacity can be increased on the fly. Realizing that both Net2WiderNet and Net2DeeperNet result in a
larger network than before, IAS dynamically samples enlarged architectures at each step to ensure that capacity
saturation is never reached during class-incremental learning. In Appendix [D] we can see that in earlier steps,
IAS maintains the initial architecture. After more than 5 classes are introduced, architectures with more capacity
are chosen because they are able to tackle the increasing difficulty of the classification task.

Appendix B Learning Complacency

The initialization method described in Section [2.3]ensures that the predicted conditional probabilities for the
new class is sufficiently far away from 0 before training. If such probability is close to 0, it might prevent the
gradients to be backpropagated properly through the new weights thus hindering the model’s ability to learn
the new class. As a result, the model would be unable to learn a new class while only maintaining knowledge
of existing classes; we refer to this phenomenon as learning complacency. While the initialization scheme
mentioned previously was sufficient to circumvent this issue in our experiments, a future improvement would be
to initialize the new weights relatively to existing weights in the output layer.


http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Appendix C Simple architecture search

All changes are made to the last hidden layer H,,. Assume the number of neurons in last hidden layer is k&

AU o

Transform H,, into having 2k neurons.

Transform H,, into having 4k neurons.

Add new layer H,1 after H,, and H,1 has k neurons.

Add new layers H, 41 and H,, 42 after H,, and they both have k neurons.

Transform H,, into having 2k neurons and add new layer H, 41 after H,, having 2k neurons.

Transform H,, into having 4k neurons and add new layer H, 41 after H,, having 4k neurons.

Appendix D Architecture evolution of IAS

The following table shows the evolution of the architectures selected by IAS. Note that only structure of the
hidden layers are shown with each element in the array indicating the number of neurons in that layer.

Table 1: Evolution of neural architecture selected by IAS

Number of classes | IAS trial 1 | IAS trial 2 | IAS trial 3
2 [16] [16] [16]
3 [16] [16] [16]
4 [16] [16] [16]
5 [16] [16] [16]
6 [32] [16] [16]
7 [64] [16] [32, 32]
8 [128] [32] [32, 32]
9 [256,256] [64, 64] [64, 64]
10 [256,256] | [128, 128] [64, 128]

Appendix E Arrival order of classes

The follow tables shows the arrival order of various classes for MNIST and Fashion-MNIST experiments
discussed in[3] MNIST digit 0 is shortened as Do and Fashion-MNIST class 0 is shortened as Fy. The classes
inside the brackets indicates the initial classes. The corresponding class descriptions for each Fashion-MNIST
label can be seen at https://github.com/zalandoresearch/fashion-mnist|

Table 2: class arrival order for each experiment

Experiment

Arrival order

MNIST

(D07D1)<—D2(—D3<—D4<—D5(—D6(—D7(—D8(—D9

Fashion-MNIST and MNIST

(Do, ..., Do) < Fo < Fy < Fy < F3 < Fy < F5 « Fg < I,



https://github.com/zalandoresearch/fashion-mnist

Appendix F  Performance of individual MNIST classes

i PERFORMANCE OF INDIVIDUAL MNIST CLASSES
T T T T

o 99'%/’ B

o
©
3

0
1

TEST ACCURACY
o
g
1

\

096 - -
095~ -
004 1 1 1 1 1 1
1 12 13 14 15 16 17 18
NUMBER OF CLASSES
[—e—Digito —e— Digit 1 Digit 2 —@— Digit 3 —@— Digit4 —®— Digit 5 —@— Digit 6 —@— Digit 7 —®— Digit 8 Digit9 |

Figure 6: The performance of all 10 MNIST classes during incremental learning experiment with MNIST and Fashion-MNIST dataset. The
results shown are average across three different trials.



	Introduction
	Class-incremental learning
	Net2Net and automatic architecture design

	Methodology
	Incremental architecture search
	Data Preprocessing
	Output layer transformation

	Experiments
	Baseline
	MNIST performance
	MNIST and Fashion-MNIST

	Discussion
	Conclusion
	Capacity Saturation
	Learning Complacency
	Simple architecture search
	Architecture evolution of IAS
	Arrival order of classes
	Performance of individual MNIST classes

