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Abstract

This paper studies the problem of stance detection which aims to predict the
perspective (or stance) of a given document with respect to a given claim. Stance
detection is a major component of automated fact checking. As annotating stances
in different domains is a tedious and costly task, automatic methods based on
machine learning are viable alternatives. In this paper, we focus on adversarial
domain adaptation for stance detection where we assume there exists sufficient
labeled data in the source domain and limited labeled data in the target domain.
Extensive experiments on publicly available datasets show the effectiveness of our
domain adaption model in transferring knowledge for accurate stance detection
across domains.

1 Introduction

With the rise of social media and microblogs, there has been an increasing awareness of the negative
influence of fake news and how it can unfairly influence public opinion on various events and
policies [8, 9, 20]. In order to counteract these effects, various organizations are now performing
manual fact checking on suspicious claims. However, manual fact checking can’t feasibly keep up
with the sheer volume of fake claims. A fact-checking process for a given claim is a challenging
multi-step process, that typically involves the following steps [19]: (i) retrieving potentially relevant
documents as evidence for the claim [10, 6], (ii) predicting the stance of each document with respect
to the claim [14, 2], (iii) estimating the trustworthiness of the documents (e.g. in the Web context, the
site of a Web document could be an important indicator of its trustworthiness), and finally (iv) making
a decision based on the aggregation of (ii) and (iii) for all documents from (i) [10].

In this paper, we focus on the second step of the fact-checking process which is the stance detection
task. Stance detection aims to automatically determine the perspective (or stance) of a document
to a claim as agree, disagree, discuss, or unrelated. Since there is not enough data with annotated
stance labels for many domains, machine learning algorithms can easily produce poor to mediocre
performance. One potential approach to alleviate the lack of labeled data is to supplement the data
sources with data from other domains. However, it is not a straightforward process as each data
source generally has its own unique distributions and nuances. In this paper, we tackle this problem
using a transfer learning technique, namely adversarial domain adaptation, to effectively use labeled
data from a source domain to improve stance detection performance on a target domain which has
limited data. Our contributions can be summarized as follows:

• We are the first to apply adversarial domain adaptation to the problem of stance detection
across different sources.

• Our model outperforms the best baseline on a publicly-available benchmark dataset, Fake
New Challenge 1.

1Available at www.fakenewschallenge.org

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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Figure 1: The architecture of our model with domain adaptation component for stance detection.

2 Method

Previously-proposed approaches for stance detection generally contain two components [1, 5, 16]:
a feature extraction component followed by a class label prediction component. In this paper, we
present a model for stance detection that augments the traditional models with a third component: a
domain adaptation component. Our domain adaptation component uses adversarial learning [4] to
encourage the feature extraction component to select common–rather than domain-specific–features
when input data is from multiple different domains. This allows the model to better leverage source
domain data for better prediction on data from the target domain. The general architecture of our
model is shown in Figure 1. As illustrated, the inputs are first given to the “Feature Extraction
Component” to compute their features and representations. These features are then passed to the
“Label Prediction Component” and then to the “Domain Adaptation Component.” In the model,
while the both latter components try to minimize their own losses, the feature extraction component
attempts to maximize a domain classification loss to encourage better mixture of examples from
different domains. The components of the model are described in detail below.

Feature Extraction Component: This component takes the input claim c and document d and
converts them to their semantic representations and features. To do this, in this component, we use
bag-of-words (BOW)—e.g., TF and TF.IDF-weighted features—and cosine similarity between c and
d features. We select these BOW features as these features are useful to filter the documents with
‘unrelated’ stance labels as shown in section 3.5. Furthermore, we also use a Convolutional Neural
Network (CNN) approach [7] for learning representations of claims and documents. We use a CNN
because it can capture n-grams and long-range dependencies [21], and can extract discriminative
word sequences that are common in the training instances [17]. These traits make CNNs useful for
dealing with long documents [15].

Label Prediction Component: This component uses a Multi-Layer Perceptron (MLP) with a fully-
connected hidden layer followed by a softmax layer which employs cross entropy loss as the cost
function. This component will predict stance labels as agree, disagree, discuss, or unrelated for a
given set of claim and document features.

Domain Adaptation Component: We introduce a domain classifier which includes a MLP followed
by a softmax layer. Given a set of features for a claim-document pair, the domain classifier predicts
which domain the features originated from. The domain classifier is an adversary because the
model—specifically, the feature extraction component—attempts to maximize the domain classifier
loss, while the domain classifier attempts to minimize it. This is because a high domain classifier loss
implies that the domain classifier is unable to accurately discern whether a set of features belongs
to a source or target domain. This implies that the features extracted from the input examples are
common to both the source and target domains as we desire. To achieve this adversarial effect, the
features from the feature extraction component are passed to a gradient reversal layer before being
passed to the domain classifier. The gradient reversal layer is a simple identity transform during
forward propagation and multiplies the gradient by a negative constant (the gradient reversal constant)
during backpropagation [4]. By adding the gradient reversal layer, the desired training behavior can
be achieved through normal model training.
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3 Experiments and Evaluations

3.1 Datasets

We use the Fake News Challenge (FNC) dataset1 as target data. This data is collected from a variety
of sources such as rumour sites, e.g. snopes.com, and Twitter accounts such as @Hoaxalizer. It
contains around 50K claim-document pairs as training data with an imbalanced distribution over
stance labels: 73% (unrelated), 18% (discuss), 7.3%(agree), 1.7%(disagree). We note that there is
a lack of labeled data especially for agree and disagree stance labels in FNC. Furthermore, we use
the Fact Extraction and VERification (FEVER) dataset [18] as source data. This dataset is collected
from Wikipedia and contains around 145K claim-document pairs as training data with imbalanced
distribution over stance labels: 55% (supported), 21% (refuted), 24%(Not Enough Information (NEI)).
We discard the examples with NEI labels as there is not any documents assigned to the claims in
those examples, and correspond the supported and refuted labels in FEVER to the agree and disagree
labels in FNC respectively.

3.2 Evaluation Metrics

We use the following evaluation metrics: Macro-F1: The average of the F1 score for each class.
Accuracy: The number of correctly classified examples divided by their total number of examples.
Weighted-Accuracy: This metric is presented by FNC 2 which is a two-level scoring scheme. It
gives 0.25 weight to the correctly predicted examples as related or unrelated. It further gives 0.75
weights to the correctly predicted related examples as agree, disagree, or discuss.

3.3 Model Parameters and Training Procedure

For our CNN, we use 300-dimensional Word2Vec [11, 12, 13] word embeddings trained on
GoogleNews dataset3, and 128 feature maps with filter width {2, 3, 4}. We set maximum word
lengths of 50 and 500 for claims and documents respectively; these values are greater than the
length for most claims and documents in the target train data. For the BOW model, we keep the
hyper-parameters and features the same as the baseline model [16]. Our models are trained using
the Adam optimizer, and 20% of the training data is set aside as validation data. In the models with
a domain adaptation (DA) component, equal amounts of both source and target data are randomly
selected at each epoch during training. Finally, we fine-tune all the hyper-parameters of our models
on validation data which contains equal amounts of source and target data.

3.4 Baselines

We compare our domain adaptation (DA) model to the following baselines: (a) Gradient Boosting,
which is the Fake News Challenge baseline that trains a gradient boosting classifier using hand-
crafted features reflecting polarity, refute, similarity and overlap between documents and claims;
(b) TALOS [1], which was ranked first at FNC. It uses hand-crafted features as well as weighted-
average between gradient-boosted decision trees (TALOS-Tree) and a deep convolutional neural
network (TALOS-DNN); (c) UCL [16], which was ranked third at FNC. This model trains a softmax
layer using n-gram features (e.g., TF and TF.IDF). We compare with this model as our BOW model
is similar to this model and uses the same features.

3.5 Our Models

We present different variations of our models where each uses a subset of components/features
shown in Figure 1. These variations help us to conduct ablation analyses on this information. The
baseline and our models are trained to predict stance labels on target data; {agree, disagree, discuss,
unrelated}. We further apply a two-level hierarchy prediction scheme in our models. That is, a model
with a hierarchical scheme is first trained to predict two stance labels as {unrelated or related},
and then the examples predicted as related are only given to the model to predict the labels {agree,
disagree, discuss}. For the first step of the hierarchy scheme, we use the BOW model which achieves
a high F1 performance of 97.7% for unrelated and 93.9% for related labels.

2The scorer is available at www.fakenewschallenge.org
3https://code.google.com/p/word2vec
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Table 1: Results on the FNC test data. BOW, CNN and DA refer to our model when it uses
bag-of-words features, convolutional features, and domain adaptation, respectively. When DA is
present, square brackets indicate which features are passed to the domain adaptation component.
The hierarchy in parentheses refers to our model with two-level prediction scheme as explained in
section 3.5. We show the results of the models based on the smallest loss for validation set across 5
independent runs.

Model Train Data Weighted-Acc. Acc. Macro-F1 F1 (agree, disagree, discuss, unrelated)
1. Gradient Boosting FNC 75.2 85.4 45.7 14.8 / 2.0 / 69.5 / 96.5
2. TALOS (#1st in FNC) FNC 82.0 89.1 57.8 53.8 / 3.6 / 76.0 / 97.9
3. TALOS-DNN FNC 60.8 66.5 41.8 27.6 / 9.3 / 47.4 / 82.7
4. TALOS-Tree FNC 83.1 89.5 56.8 53.4 / 0.2 / 76.3 / 98.4
5. UCL (#3rd in FNC) FNC 81.7 88.5 57.9 47.9 / 11.4 / 74.7 / 97.6

6. BOW FNC 81.1 88.6 56.0 49.2 / 2.5 / 74.8 / 97.6
7. CNN FNC 40.8 71.3 23.3 0.3 / 0.0 / 10.0 / 83.0
8. BOW + CNN FNC 74.9 86.8 52.2 41.4 / 0.0 / 72.1 / 95.2
9. BOW (hierarchy) FNC 80.7 88.5 57.3 49.5 / 7.5 / 74.3 / 97.7
10. CNN (hierarchy) FNC 79.9 87.9 56.0 54.9 / 0.2 / 71.1 / 97.7
11. BOW + CNN (hierarchy) FNC 80.3 88.2 56.5 56.0 / 0.0 / 72.1 / 97.7

12. BOW FNC, FEVER 78.5 86.4 56.3 48.8 / 9.8 / 69.4 / 97.1
13. [BOW + DA] FNC, FEVER 72.9 81.5 48.6 44.5 / 2.0 / 51.7 / 96.1
14. BOW (hierarchy) FNC, FEVER 78.8 87.3 57.2 51.7 / 10.2 / 69.1 / 97.7
15. [BOW + DA] (hierarchy) FNC, FEVER 78.5 87.1 56.4 51.6 / 8.3 / 68.0 / 97.7

16. CNN FNC, FEVER 41.3 64.3 27.3 17.4 / 2.0 / 11.0 / 78.8
17. [CNN + DA] FNC, FEVER 39.0 64.3 24.0 13.5 / 0.2 / 3.3 / 78.9
18. CNN (hierarchy) FNC, FEVER 79.0 87.4 56.6 51.9 / 7.5 / 69.3 / 97.7
19. [CNN + DA] (hierarchy) FNC, FEVER 79.1 87.7 57.9 51.2 / 11.4 / 71.3 / 97.7

20. BOW + CNN FNC, FEVER 71.7 84.5 51.5 44.6 / 5.6 / 60.2 / 95.6
21. BOW + [CNN + DA] FNC, FEVER 71.9 84.6 51.4 44.9 / 4.4 / 60.6 / 95.6
22. BOW + CNN (hierarchy) FNC, FEVER 79.6 87.8 56.6 53.1 / 5.1 / 70.6 / 97.7
23. BOW + [CNN + DA] (hierarchy) FNC, FEVER 80.3 88.2 60.0 54.6 / 15.1 / 72.6 / 97.7

3.6 Performance Analysis

Table 1 shows the results of different models for the target test data, i.e., FNC test data. Lines 1-5
show the results for baseline models explained in section 3.4. As the results show, they weakly
perform for agree and disagree stances due to the small size of labeled data; only 1.7% and 7.3% of
the FNC data has disagree and agree labels. Lines 6-23 show the results of different configurations
of our model as explained in section 3.5. Lines 6-8 show the results for BOW, CNN and their
combinations respectively; the results of these models with the hierarchy scheme are shown in lines
9-11. The results show that using the hierarchy scheme can help models to perform better, especially
for CNN model where its result improves from 23.3% F1 (line 7) to 56% (line 10). However, these
models don’t improve the baseline results, except for the combination of BOW and CNN models
with the hierarchy scheme (see line 11). This model achieves the best result for agree, while it poorly
performs on disagree. These results show that a promising solution is to use domain adaptation to
deal with the limited data size as we show below.

While the above results (lines 1-11) are obtained when only the FNC train data is used, lines 12-23
show the results of different configuration of our model when we use additional training data from
a different domain (i.e., FEVER) in addition to the FNC data. Lines 12-15 show the results for
the BOW model with and without the hierarchy scheme and domain adaptation (DA) component.
The results show that domain adaptation does not improve the results for BOW model. We repeat
these experiments with CNN model (lines 16-19), and the CNN model with hierarchy scheme
can significantly perform better when using the DA component. Given these results, we pass only
convolutional features to the DA component in lines 20-23 which show the results for our model when
using a combination of BOW and CNN model with and without the hierarchy scheme and domain
adaptation. The model that combines BOW and CNN model with the hierarchy scheme and domain
adaptation achieves the best F1 performance, especially for disagree and agree classes—because the
source data only contains the corresponding disagree and agree labels. In summary, the results show:

• The hierarchy scheme can help our models to perform better across all the metrics.
• Our best model is the combination of BOW, CNN+DA, and the hierarchy scheme. It

outperforms the baselines on F1, especially on the most important classes: disagree, agree.
• The source FEVER data can improve the performance of our model for target FNC data

through adversarial domain adaptation, when uses CNN model with hierarchy scheme (see
lines 18-19 in Table 1) or BOW+CNN model (see lines 20-23 in Table 1).
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3.7 Training Loss Trend

Figure 2: The classification (or label) and domain
adaptation losses on validation data across training
epochs for our best model; BOW + CNN + DA with
hierarchy scheme.

Figure 2 shows the classification and domain
adaptation losses across epochs on valida-
tion data for our best model: BOW + CNN
+ DA model with the hierarchy scheme. As
shown in the figure, both losses are unstable
during the early epochs of training. This is
because of learning and domain adaptation
rates, which couples a high learning rate with
a ramp up in the domain adaption rate. Then,
after around 10 epochs, the classification and
domain adaptation losses get more stable and
behave as expected; the classification loss
slowly decreases as the label prediction com-
ponent in the model attempts to minimize its
loss, while the domain adaptation loss slowly
increases as the model attempts to maximize
the domain loss so that it cannot distinguish
between its source and target examples as we
explained in section 2.

4 Conclusion

We present a model that uses adversarial domain adaptation for the task of stance detection. Our
experiments show the effectiveness of our model in transferring knowledge among stance datasets,
from the FEVER dataset to the FNC dataset. Our model outperforms the state-of-the-art approaches
for this task and obtains 60% F1 on the FNC target data. For future work, we plan to apply our best
model with adversarial domain adaptation to other combinations of datasets collected for stance
detection. Furthermore, we plan to use the datasets collected for a similar task, e.g., the Stanford
Natural Language Inference (SNLI) data [3] to investigate the utility of our model in transfer learning
between inference and stance detection tasks.
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