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Abstract

There is a strong emphasis in the continual learning literature on sequential classifi-
cation experiments, where each task bares little semblance to previous ones. While
certainly a form of continual learning, such tasks do not accurately represent many
continual learning problems of the real-world, where the data distribution often
evolves slowly over time. We propose using Generative Adversarial Networks
(GANs) as a potential source for generating potentially unlimited datasets of this
nature. We also identify that the dynamics of GAN training naturally constitute a
continual learning problem, and show that leveraging continual learning methods
can improve performance. As such, we show that techniques from both continual
learning and GAN, typically studied separately, can be used to each other’s benefit.

1 Introduction
The ability to learn new things continually while retaining previously acquired knowledge is a
desirable attribute of an intelligent system. Humans and other forms of life do this well, but
neural networks are known to exhibit a phenomenon known as catastrophic forgetting [12, 19]: the
gradients that adapt a neural network’s parameters to perform a new task tend to also clobber the
model’s ability to perform old ones. Because of its broad importance to the general field of machine
learning, recent years have seen increased interest in approaches that enable continual learning (e.g.
[9, 27, 11, 16, 20, 25]). These methods focus on improving the model architecture, objective, or
training procedure to preserve knowledge of prior tasks while still enabling learning of new ones.

However, many of these works tend to conduct experiments that focus on learning a sequence of
disparate tasks, which while certainly a continual learning task, does not capture the dynamics of
a setting in which the data slowly evolves over time, as opposed to making abrupt discontinuous
jumps. Such situations are common in many real-world applications, as deployed systems must
maintain performance in an ever-evolving environment. It is therefore desirable for experiments in
the literature to reflect this setting, but datasets that evolve over time are not readily available, which
makes applying continual learning methods to such circumstances difficult.

On the other hand, recent years have seen an enormous amount of progress made in generative
models, specifically with the advent of Generative Adversarial Networks (GANs) [3]. GANs have
demonstrated the ability to learn impressively complex distributions [8, 1] from data samples alone.
Interestingly, since GANs are capable of learning conditional distributions [14], and because the
distribution of the generator’s outputs smoothly evolves as training progresses, GANs represent an
opportunity for producing a labeled dataset that varies through time.

Importantly though, the implications of the generator’s distribution varying through time go beyond
the potential for new sequential task benchmarks for continual learning. GANs are known to be
somewhat challenging to train, with mode collapse a common problem. Inspection of a collapsed
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Figure 1: Real samples from a mixture of eight Gaussians in red; generated samples in blue. (a)
The generator is mode collapsed in the bottom right. (b) The discriminator learns to recognize the
generator oversampling this region and pushes the generator away, so the generator gravitates toward
a new mode. (c) The discriminator continues to chase the generator, causing the generator to move in
a clockwise direction. (d) The generator eventually returns to the same mode as (a). Such oscillations
are common while training a vanilla GAN. Best seen as a video: https://youtu.be/91a2gPWngo8.

generator over subsequent training iterations reveal that rather than converging to a stationary distri-
bution, mode-collapsed generators tend to oscillate wildly, oftentimes revisiting previous locations
of the data space—modes that the discriminator presumably had previously learned to recognize
as fake (see Figure 1). We conjecture this phenomenon is at least in part enabled by catastrophic
forgetting in the discriminator: during training, synthesized fakes are presented to the discriminator
in a sequential manner reminiscent of the way tasks are learned in continual learning literature. Since
the discriminator is typically not refreshed with earlier synthesized samples, it loses its ability to
recognize them, allowing the generator to oscillate back to previous locations.

With these perspectives in mind, we make the following observations and contributions:

• Experiments in continual learning focus on sequences of disjoint tasks and do not cover the more
realistic scenario where a model encounters an evolving data distribution. GANs represent an
opportunity to fill this gap by synthesizing datasets that have the requisite time component.

• The training of a GAN discriminator is a continual learning problem. We show that augmenting
GAN models with continual learning methods improves performance on benchmark datasets.

2 Methods
2.1 GAN-generated datasets for continual learning
Consider distribution preal(x), from which we have data samples Dreal. We seek to learn a mapping
from an easy-to-sample distribution p(z) (e.g. standard normal) to a data distribution pgen(x),
which we want to match preal(x). This mapping is parameterized as a neural network Gφ(z) with
parameters φ, termed the generator. The synthesized data are drawn x = Gφ(z), with z ∼ p(z). In
the GAN [3] set-up, we simultaneously learn another neural network Dθ(x) ∈ [0, 1] with parameters
θ, termed the discriminator, which provides feed-back to Gφ(z). Trained by a min-max objective in
conjunction with the generator, the generator gradually evolves: initial generations resemble random
noise, but eventually grow to resemble Dreal. At any point during training, an unlimited number of
samples can be drawn from Gφ(z). Therefore, at any training iteration t, we can generate a dataset
Dgent , and because pgen(x) smoothly evolves with t, so does the sequence of datasets Dgen1 , ...,DgenT .

As an example, we can train a DCGAN [18] on MNIST and generate an entire “fake" dataset of
70K samples every 50 training iterations of the DCGAN generator. We propose performing learning
on each of these generated datasets as individual tasks for continual learning. Selected samples are
shown in Figure 3 of Appendix A from the datasets Dgent for t ∈ {5, 10, 15, 20}, each generated
from the same 100 samples of z for all t. By conditioning the GAN [14] on randomly generated
labels, we have a mechanism for generating labeled datasets. With the success of large-scale GANs
[1], a similar method can be used to generate time-varying ImageNet datasets.

2.2 Continual learning for GAN discriminators
The traditional continual learning methods like Elastic Weight Consolidation (EWC) [9] or Intelligent
Synapses (IS) [27]1 are designed for certain canonical benchmarks, commonly consisting of a
small number of clearly defined tasks (e.g., classification datasets in sequence). In GANs, the
discriminator is trained on dataset Dt = {Dreal,Dgen

t } at each iteration t. However, because of
the evolution of the generator, the distribution pgen(x) from which Dgen

t comes changes over time.

1Summary of both of these methods can be found in Appendix B
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As such, we argue that different instances in time of the generator should be viewed as separate
tasks. Specifically, in the parlance of continual learning, the training data are to be regarded as
D = {(Dreal,Dgen

1 ), (Dreal,Dgen
2 ), ...}. Thus motivated, we would like to apply continual learning

methods to the discriminator, but doing so is not straightforward for the following reasons:

• Definition of a task: EWC and IS were originally proposed for discrete, well-defined tasks. For
GAN, there is no such precise definition as to what a “task” is, and as discriminators are not
typically trained to convergence at every iteration, it is also unclear how long a task should be.

• Computational memory: While Equations 3 and 5 are for two tasks, they can be extended to
K tasks by adding an additional loss term for each of the K − 1 prior tasks. As each loss term
requires saving both a historical reference term θ∗k and either a diagonal Fisher Information
matrix Fk or importance weights ωk (all of which are the same size as the model parameters
θ) for each task k, employing these techniques naively quickly becomes impractical for bigger
models when K gets large, especially if K is set to the number of training iterations T .

• Continual not learning: Early iterations of the discriminator are likely to be non-optimal, and
without a forgetting mechanism, EWC and IS may forever lock the discriminator to a poor
initialization. Additionally, the unconstrained addition of a large number of loss terms will cause
the continual learning regularization term to grow unbounded, which can disincentivize any
further changes in θ.

To address these issues, we build upon EWC and IS by proposing several changes:

Number of tasks as a rate: We choose the total number of tasks K as a function of a constant rate
α, which denotes the number of iterations before the conclusion of a task, as opposed to arbitrarily
dividing the GAN training iterations into some set number of segments. Given T training iterations,
this means a rate α yields K = T

α tasks.

Online Memory: Seeking a way to avoid storing extra θ∗k, Fk, or ωk, we observe that the sum of two
or more quadratic forms is another quadratic, which gives the classifier loss with continual learning
the following form for the (k + 1)th task:

L(θ) = Lk+1(θ) + LCL(θ), with LCL(θ) ,
λ

2

∑
i

Sk,i(θi − θ̄∗k,i)2 , (1)

where θ̄∗k,i =
Pk,i

Sk,i
, Sk,i =

∑k
κ=1Qκ,i, Pk,i =

∑k
κ=1Qκ,iθ

∗
κ,i, and Qκ,i is either Fκ,i or ωκ,i,

depending on the method. We name models with EWC and IS augmentations EWC-GAN and
IS-GAN, respectively.

Controlled forgetting: To provide a mechanism for forgetting earlier non-optimal versions of the
discriminator and to keep LCL bounded, we add a discount factor γ: Sk,i =

∑k
κ=1 γ

k−κQκ,i and
Pk,i =

∑k
κ=1 γ

k−κQκ,iθ
∗
κ,i. Together, α and γ determine how far into the past the discriminator

remembers previous generator distributions, and λ controls how important memory is relative to the
discriminator loss. Note, the terms Sk and Pk can be updated every α steps in an online fashion:

Sk,i = γSk−1,i +Qk,i, Pk,i = γPk−1,i +Qk,iθ
∗
k,i (2)

This allows the EWC or IS loss to be applied without necessitating storing either Qk or θ∗k for every
task k, which would quickly become too costly to be practical. Only a single variable to store a
running average is required for each of Sk and Pk, making this method space efficient.

Note that the training of the generator remains the same. Here we have shown two methods to
mitigate catastrophic forgetting for the original GAN; however, the proposed framework is applicable
to almost all of the wide range of GAN setups. Similarly, while we focus on EWC and IS here, any
continual learning method can be applied in a similar way.

3 Related work
There has been previous work investigating continual learning within the context of GANs. Improved
GAN [21] introduced historical averaging, which regularizes the model with a running average of
parameters of the most recent iterations. Simulated+Unsupervised training [23] proposed replacing
half of each minibatch with previous generator samples during training of the discriminator, as
previous generations should always be considered fake. However, this necessitates a historical buffer
of samples and halves the number of current samples that can be considered. Continual Learning

3



Figure 2: Each line represents the discriminator’s test accuracy on the fake GAN datasets. Note the
sharp decrease in the discriminator’s ability to recognize previous fake samples upon fine-tuning on
the next dataset using SGD (left). Forgetting still occurs with EWC (right), but is less severe.

Table 1: Image generation quality on CelebA and CIFAR-10
CelebA CIFAR-10

Method FID ↓ FID ↓ ICP ↑

DCGAN 12.52 41.44 6.97 ± 0.05
DCGAN + EWC 10.92 34.84 7.10 ± 0.05
WGAN-GP - 30.23 7.09 ± 0.06
WGAN-GP + EWC - 29.67 7.44 ± 0.08
SN-DCGAN - 27.21 7.43 ± 0.10
SN-DCGAN + EWC - 25.51 7.58 ± 0.07

GAN [22] applies EWC to GAN, as we have, but uses it in the context of the class-conditioned
generator that learns classes sequentially, as opposed to all at once, as we propose. [24] independently
makes a similar observation on the continual learning nature of GAN training, but propose momentum
and gradient penalty solutions instead and restrict themselves to experiments on toy examples.

4 Experiments
4.1 Sequential discrimination
While Figure 1 implies catastrophic forgetting in a GAN discriminator, we can show this concretely.
Using the DCGAN-generated MNIST datasets Dgen1 , ...,DgenT described in Section 2.1, we now
train a discriminator to convergence on each Dgen

t in sequence. Importantly, we do not include
samples from Dgen

<t while fine-tuning on Dgen
t . After fine-tuning on the train split of dataset Dgen

t ,
the percentage of generated examples correctly identified as fake by the discriminator is evaluated
on the test splits of Dgen

≤t , with and without EWC (Figure 2). The catastrophic forgetting effect of
the discriminator trained with SGD is clear, with a steep drop-off in discriminating ability on Dgen

t−1

after fine-tuning on Dgen
t ; this is unsurprising, as pgen(x) has evolved specifically to deteriorate

discriminator performance. While there is still a dropoff with EWC, forgetting is less severe. On the
other hand, there is certainly room to improve, demonstrating the value of considering such kinds of
datasets for continual learning methods.

4.2 Augmenting GAN with continual learning
We augment the discriminators of various popular GANs implementations with EWC to preserve
recognition of previously seen generations, testing on two image datasets, CelebA and CIFAR-10.
Comparisons are made with the TTUR [6] variants of DCGAN [18] and WGAN-GP [4], as well as
an implementation of a spectral normalized [15] DCGAN (SN-DCGAN). Without modifying the
learning rate or model architecture, we show results with and without the EWC loss term added
to the discriminator for each. Performance is quantified with the Fréchet Inception Distance (FID)
[6] for both datasets. Since labels are available for CIFAR-10, we also report ICP for that dataset.
Best values are reported in Table 1. In each model, we see improvement in both FID and ICP from
the addition of EWC to the discriminator. Additional experiments improving GAN with continual
learning can be found in Appendix C.

5 Conclusion
We have identified the connections between GANs and continual learning: the training dynamics
of GAN naturally form a continual learning problem. This perspective allows us to show that (1)
GAN-generated datasets provide opportunities to form more realistic continual learning benchmarks;
(2) Existing continual learning methods can be adjusted to improve GAN training. Extensive
experimental results have demonstrated the proposed observations and solutions.
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A Samples from generated MNIST datasets

(a) Dgen5 (b) Dgen10

(c) Dgen15 (d) Dgen20

Figure 3: Image samples from generated “fake MNIST" datasets

B Continual learning methods summary

B.1 Elastic weight consolidation (EWC)

To derive the EWC loss, [9] frames training a model as finding the most probable values of the parameters θ
given the data D. For two tasks, the data are assumed partitioned into independent sets according to the task,
and the posterior for Task 1 is approximated as a Gaussian with mean centered on the optimal parameters for
Task 1 θ∗1 and diagonal precision given by the diagonal of the Fisher information matrix F1 at θ∗1 . This gives the
EWC loss the following form:

L(θ) = L2(θ) + LEWC(θ), with LEWC(θ) ,
λ

2

∑
i

F1,i(θi − θ∗1,i)2 , (3)

where L2(θ) = log p(D2|θ) is the loss for Task 2 individually, λ is a hyperparameter representing the
importance of Task 1 relative to Task 2, F1,i =

( ∂L1(θ)
∂θi

∣∣
θ=θ∗

1
)2, i is the parameter index, and L(θ) is the

new loss to optimize while learning Task 2. Intuitively, the EWC loss prevents the model from straying too
far away from the parameters important for Task 1 while leaving less crucial parameters free to model Task 2.
Subsequent tasks result in additional LEWC(θ) terms added to the loss for each previous task. By protecting
the parameters deemed important for prior tasks, EWC as a regularization term allows a single neural network
(assuming sufficient parameters and capacity) to learn new tasks in a sequential fashion, without forgetting how
to perform previous tasks.

7



B.2 Intelligent synapses (IS)

While EWC makes a point estimate of how essential each parameter is at the conclusion of a task, IS [27]
protects the parameters according to their importance along the task’s entire training trajectory. Termed synapses,
each parameter θi of the neural network is awarded an importance measure ω1,i based on how much it reduced
the loss while learning Task 1. Given a loss gradient g(t) = ∇θL(θ)|θ=θt at time t, the total change in loss
during the training of Task 1 then is the sum of differential changes in loss over the training trajectory. With the
assumption that parameters θ are independent, we have:∫ t1

t0
g(t)dθ =

∫ t1

t0
g(t)θ′dt =

∑
i

∫ t1

t0
gi(t)θ

′
idt , −

∑
i

ω1,i , (4)

where θ′ = dθ
dt

and (t0, t1) are the start and finish of Task 1, respectively. Note the added negative sign, as
importance is associated with parameters that decrease the loss.

The importance measure ω1,i can now be used to introduce a regularization term that protects parameters
important for Task 1 from large parameter updates, just as the Fisher information matrix diagonal terms F1,i

were used in EWC. This results in an IS loss very reminiscent in form:

L(θ) = L2(θ) + LIS(θ), with LIS(θ) ,
λ

2

∑
i

ω1,i(θi − θ∗1,i)2 . (5)

Note that [27] instead consider Ω1,i =
ω1,i

(∆1,i)2+ξ
, where ∆1,i = θ1,i − θ0,i and ξ is a small number for

numerical stability. We however found that the inclusion of (∆1,i)
2 can lead to the loss exploding and then

collapsing as the number of tasks increases and so omit it. We also change the hyperparameter c into λ
2

.

C Additional Experiments

C.1 Mixture of eight Gaussians

We show results on a toy dataset consisting of a mixture of eight Gaussians, as in the example in Figure 1.
Following the setup of [13], the real data are evenly distributed among eight 2-dimensional Gaussian distributions
arranged in a circle of radius 2, each with covariance 0.02I (see Figure 4). We evaluate our model with Inception
Score (ICP) [21], which gives a rough measure of diversity and quality of samples; higher scores imply better
performance, with the true data resulting in a score of around 7.870. For this simple dataset, since we know the
true data distribution, we also calculate the symmetric Kullback–Leibler divergence (Sym-KL); lower scores
mean the generated samples are closer to the true data. We show computation time, measured in numbers of
training iterations per second (Iter/s), averaged over the full training of a model on a single Nvidia Titan X
(Pascal) GPU. Each model was run 10 times, with the mean and standard deviation of each performance metric
at the end of 25K iterations reported in Table 2.

The performance of EWC-GAN and IS-GAN were evaluated for a number of hyperparameter settings. We
compare our results against a vanilla GAN [3], as well as a state-of-the-art GAN with spectral normalization

Table 2: Iterations per second, inception score, and symmetric KL divergence comparison on a
mixture of eight Gaussians.

Model

Method α λ γ Iter/s ↑ ICP ↑ Sym-KL ↓

GAN - - - 87.59 ± 1.45 2.835 ± 2.325 19.55 ± 3.07
GAN + `2 weight 1 0.01 0 5.968 ± 1.673 15.19 ± 2.67
GAN + historical avg. 1 0.01 0.995 7.305 ± 0.158 13.32 ± 0.88
GAN + SN - - - 49.70 ± 0.13 6.762 ± 2.024 13.37 ± 3.86

GAN + IS 1000 100 0.8 42.26 ± 0.35 7.039 ± 0.294 15.10 ± 1.51
GAN + IS 100 10 0.98 42.29 ± 0.10 7.500 ± 0.147 11.85 ± 0.92
GAN + IS 10 100 0.99 41.07 ± 0.07 7.583 ± 0.242 11.88 ± 0.84
GAN + SN + IS 10 100 0.99 25.69 ± 0.09 7.699 ± 0.048 11.10 ± 1.18

GAN + EWC 1000 100 0.8 82.78 ± 1.55 7.480 ± 0.209 13.00 ± 1.55
GAN + EWC 100 10 0.98 80.63 ± 0.39 7.488 ± 0.222 12.16 ± 1.64
GAN + EWC 10 10 0.99 73.86 ± 0.16 7.670 ± 0.112 11.90 ± 0.76
GAN + SN + EWC 10 10 0.99 44.68 ± 0.11 7.708 ± 0.057 11.48 ± 1.12
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Figure 4: Each row shows the evolution of generator samples at 5000 training step intervals for GAN,
SN-GAN, and EWC-GAN for two α values. The proposed EWC-GAN models have hyperparameters
matching the corresponding α in Table 2. Each frame shows 10000 samples drawn from the true
eight Gaussians mixture (red) and 10000 generator samples (blue).

(SN) [15] applied to the discriminator. As spectral normalization augments the discriminator loss in a way
different from continual learning, we can combine the two methods; this variant is also shown.

Note that a discounted version of discriminator historical averaging [21] can be recovered from the EWC and IS
losses if the task rate α = 1 and Qk,i = 1 for all i and k, a poor approximation to both the Fisher information
matrix diagonal and importance measure. If we also set the historical reference term θ̄∗k and the discount factor γ
to zero, then the EWC and IS losses become `2 weight regularization. These two special cases are also included
for comparison.

We observe that augmenting GAN models with EWC and IS consistently results in generators that better
match the true distribution, both qualitatively and quantitatively, for a wide range of hyperparameter settings.
EWC-GAN and IS-GAN result in a better ICP and FID than `2 weight regularization and discounted historical
averaging, showing the value of prioritizing protecting important parameters, rather than all parameters equally.
EWC-GAN and IS-GAN also outperform a state-of-the-art method in SN-GAN. In terms of training time,
updating the EWC loss requires forward propagating a new minibatch through the discriminator and updating
S and P , but even if this is done at every step (α = 1), the resulting algorithm is only slightly slower than
SN-GAN. Moreover, doing so is unnecessary, as higher values of α also provide strong performance for a much
smaller time penalty. Combining EWC with SN-GAN leads to even better results, showing that the two methods
can complement each other. IS-GAN can also be successfully combined with SN-GAN, but it is slower than
EWC-GAN as it requires tracking the trajectory of parameters at each step. Sample generation evolution over
time is shown in Figure 4.

C.2 Text generation of COCO Captions
We also consider the text generation on the MS COCO Captions dataset [2], with the pre-processing in [5].
Quality of generated sentences is evaluated by BLEU score [17]. Since BLEU-b measures the overlap of b
consecutive words between the generated sentences and ground-truth references, higher BLEU scores indicate
better fluency. Self BLEU uses the generated sentences themselves as references; lower values indicate higher
diversity.

We apply EWC and IS to textGAN [28], a recently proposed model for text generation in which the discriminator
uses feature matching to stabilize training. This model’s results (labeled “EWC” and “IS”) are compared to a
Maximum Likelihood Estimation (MLE) baseline, as well as several state-of-the-art methods: SeqGAN [26],
RankGAN [10], GSGAN [7] and LeakGAN [5]. Our variants of textGAN outperforms the vanilla textGAN for
all BLEU scores (see Table 3), indicating the effectiveness of addressing the forgetting issue for GAN training in
text generation. EWC/IS + textGAN also demonstrate a significant improvement compared with other methods,
especially on BLEU-2 and 3. Though our variants lag slightly behind LeakGAN on BLEU-4 and 5, their self
BLEU scores (Table 4) indicate it generates more diverse sentences. Sample sentence generations can be found
in Table 5.
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Table 3: Test BLEU ↑ results on MS COCO
Method MLE SeqGAN RankGAN GSGAN LeakGAN textGAN EWC IS

BLEU-2 0.820 0.820 0.852 0.810 0.922 0.926 0.934 0.933
BLEU-3 0.607 0.604 0.637 0.566 0.797 0.781 0.802 0.791
BLEU-4 0.389 0.361 0.389 0.335 0.602 0.567 0.594 0.578
BLEU-5 0.248 0.211 0.248 0.197 0.416 0.379 0.400 0.388

Table 4: Self BLEU ↓ results on MS COCO
Method MLE SeqGAN RankGAN GSGAN LeakGAN textGAN EWC IS

BLEU-2 0.754 0.807 0.822 0.785 0.912 0.843 0.854 0.853
BLEU-3 0.511 0.577 0.592 0.522 0.825 0.631 0.671 0.655
BLEU-4 0.232 0.278 0.288 0.230 0.689 0.317 0.388 0.364

Table 5: Sample sentence generations from EWC + textGAN
a couple of people are standing by some zebras in the background
the view of some benches near a gas station
a brown motorcycle standing next to a red fence
a bath room with a broken tank on the floor
red passenger train parked under a bridge near a river
some snow on the beach that is surrounded by a truck
a cake that has been perform in the background for takeoff
a view of a city street surrounded by trees
two giraffes walking around a field during the day
crowd of people lined up on motorcycles
two yellow sheep with a baby dog in front of other sheep
an intersection sits in front of a crowd of people
a red double decker bus driving down the street corner
an automobile driver stands in the middle of a snowy park
five people at a kitchen setting with a woman
there are some planes at the takeoff station
a passenger airplane flying in the sky over a cloudy sky
three aircraft loaded into an airport with a stop light
there is an animal walking in the water
an older boy with wine glasses in an office
two old jets are in the middle of london
three motorcycles parked in the shade of a crowd
group of yellow school buses parked on an intersection
a person laying on a sidewalk next to a sidewalk talking on a cell phone
a chef is preparing food with a sink and stainless steel appliances
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