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Represen&a&ian Leariing

e Good features essential for successful ML

raw represented MACHINE
input * by trersed '» LEARNING
data features

e Handcrafting features vs learning them

e Good representation: captures posterlor bellabout
explanatory causes, disentangles these. | g
factors of variation

* Representation learning: guesses
the features / factors / causes = V.
good representation of observed data. SIS



DEQP Represen&a&i.ovx Learning

Learn multiple levels of representation

of increasing complexity/abstraction )
* potentially exponential gain in expressive power i
X

* brains are deep
* humans organize knowledge in a compositional way
e Better MCMC mixing in space of deeper representations
(Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Following up ol (Bengio et al NIPS2000)
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Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome



Combining Multiple Sources of Evidence
with Shared Representations

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event ur' person

propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...

(Bordes et al AISTATS 2012, MLJ 2013)
* FACTS = DATA P(person,url,event)
e Deduction = Generalization ®%%

P(url,words,history)

e Traditional ML: data = matrix

history words urI




Tem Foral. Coherence and Scales

* Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



How do humans generalize
from very few examples?

8

They transfer knowledge from previous learning:
* Representations

Explanatory factors
Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y | x)

- Need good unsupervised learning of representations



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data
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Lakent Variables Love-Hate Relationship

e GOOD! Appealing: model explanatory factors h

e BAD! Exact inference? Nope. Just Pain.
too many possible configurations of h

e WORSE! Learning usually requires inference y
and/or sampling from P(h, x)
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AV\QV\jMGUS Latent Variables

* No pre-assigned semantics

e Learning discovers underlying factors,

e.g., PCA discovers leading directions of variations

* |ncreases expressiveness of P(x)=zh P(x,h)

e Universal approximators, e.g. for RBMs
(Le Roux & Bengio, Neural Comp. 2008)
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Deep Probabilistic Models

e Linear factor models (sparse coding, PCA, ICA) - shallow
e Restricted Boltzmann Machines (RBMs) many variants — shallow
° Energy(x,h)=-h" W x
e Deep Belief Nets (DBN)
* P(x,h,,h,, h;) =P(x|h,) P(h,|h,)P(h,, h,),
where P(h,, h;) = RBM, conditionals = sigmoid+affine
e Deep Boltzmann Machines (DBM)
* Energy(x,h;h,,.)=-h, W, x-h,W,h,-...
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Stack of RBMs ll

> De.eﬁ Bolbtzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD
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Approximate Inference

e MAP
* h* = argmax, P(h|x) =2 assume 1 dominant mode
e Variational
* Look for tractable Q(h) minimizing KL(Q(.)| | P(.|x))
* Qis either factorial or tree-structured
e =» strong assumption
e MCMC
e Setup Markov chain asymptotically sampling from P(h|x)
* Approx. marginalization through MC avg over few samples
* =» assume a few dominant modes
e Approximate inference can seriously hurt learning

(Kulesza & Pereira NIPS’2007)
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Compu&a&iov\ai. Grapks

e Operations for particular task

 Neural nets’ structure = computational graph for P(y|x)
e Graphical model’s structure # computational graph for inference

e Recurrent nets & graphical models

= family of computational graphs sharing parameters

e Could we have a parametrized family of computational graphs
defining “the model”?

15



Learned Appraxi‘.ma&e; Inference

1. Construct a computational graph corresponding to inference
* Loopy belief prop. (Ross et al CVPR 2011, Stoyanov et al 2011)
* Variational mean-field (Goodfellow et al, ICLR 2013)
* MAP (Kavukcuoglu et al 2008, Gregor & LeCun ICML 2010)

2. Optimize parameters wrt criterion of interest, possibly
decoupling from the generative model’s parameters

Learning can compensate for the inadequacy of approximate
inference, taking advantage of specifics of the data distribution

16



THE PROBLEM




Potentially HU,SQ Number of
Modes in &he. Posterior P(h|x)

e Foreign speech example, y=answer to question:
* 10 word segments

100 plausible candidates per word

10° possible segmentations
* Most configurations (999999/1000000) implausible
=>» 10%° high-probability modes

e All known approximate inference scheme break down if the
posterior has a huge number of modes (fails MAP & MCMC)
and not respecting a variational approximation (fails variational)
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THE SOLUTION




Hint

e Deep neural nets learn good P(y|x) classifiers even if there are
potentially many true latent variables involved

e Exploits structure in P(y|x) that persist even after summing h

e But how do we generalize this idea to full joint-distribution
learning and answering any question about these variables, not
just one?

20



Grenerative Stochastic Networks (GSN)

e Recurrent parametrized stochastic computational graph that
defines a transition operator for a Markov chain whose

asymptotic distribution is implicitly estimated by the model
 Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Example structure inspired from the DBM Gibbs chain:

noise

3 to 5 steps

21



Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)
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Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

higher probability direction (Alain & Bengio 2013) concentrate near a
r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond toa kmd of

Matching (Vincent 2011)
[equivalent when noise—>0]
* Compared to RBM: Corrupted input
No partition function issue, -~ —g_
+ can measure training

. \ 1
criterion .« _ 7

prior: examples



ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
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Previous Theoretical Results

(Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

e Squared reconstruction error | | r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX
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Denoising Auto-Encoder Marikov Chain

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X), X ~Py, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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New Theoretical Results: Denoising AE

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain, so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

Theorem 1. If P, (X|X) is a consistent estimator of the true

conditional distribution P(X|X) and T,, defines an irreducible
and ergodic Markov chain, then as n — oo, the asymptotic dis-
tribution 7, (X) of the generated samples converges to the data
generating distribution P(X).

Making Py, (X|X) match P(X|X) makes 7, (X) match P(X)

/1

denoising distr truth stationary distr. truth
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Grenerative Stochastic Networks (GSN)

e |If we decompose the reconstruction probability into a
parametrized noise-dependent part X = f,, (X, Z) and a noise-
independent part Py, (X|)~() , we also get a consistent
estimator of the data generating distribution, if the chain

conve rges- Corollary 2. Let training data X ~ P(X) and independent
noise Z ~ P(Z). Consider a model Py, (X |fo,(X, Z)) trained
(over both 01 and 02) by regularized conditional maximum likeli-
hood with n examples of (X, Z) pairs. For a given 01, a random
variable X = fp, (X, Z) is defined. Assume that as n increases,
Py, is a consistent estimator of the true P(X|X). Assume also
that the Markov chain X; ~ Py, (X|fo,(Xt—1,Z¢—1)) (where
Zy—1 ~ P(Z)) converges to a distribution T, even in the limit
asn — 0o. Then m,(X) — P(X) as n — oo.

noise

h [ b\

%Wg\ 3 3

T T
1 1 1
sample x,

t

w sample x;
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GSN Experiments: validating the
theorem in a discrete non- pamme.!:ﬁ.c
setting

035

e Discrete data, X . true P(x)
. |l empirical P(x)
IN {0119} 030 B estimated P(x)

e Corruption: add .|
+/- small int. |

e Reconstruction _o20
distribution =
maximum
likelihood
estimator
(counting) 005l

P(x=k)

0.15

0.10r
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&SN Eixpercmev\!:s' validating the
theorem in a conkinuous non-

pamme&m: setting

30

Continuous data,
X in R0 Gaussian
corruption

Reconstruction
distribution =
Parzen (mixture of
Gaussians)
estimator

5000 training
examples, 5000
samples
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dimensions
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&SN Experi.men&s: validating the theorem in
a continuous non-parametric setting
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Shallow Model: Generalizing the Denoising
Auto-Encoder Probabilistic Interpretation

e C(Classical denoising auto-encoder architecture, single hidden layer
with noise only injected in input

e Factored Bernouilli reconstruction prob. distr.

X = fo,(X,7Z)= parameter-less, salt-and-pepper noise on top of X

W T 3 mLI T
1 \W% !
X, 1
sample x, sample x, sample x,

e Generalizes (Alain & Bengio 2013): not just continuous r.v., any
training criterion (as log-likelihood), not just Gaussian but any
corruption (no need to be tiny to correctly estimate distribution).
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Experimav\!:s: Shallow vs ‘Dee.p
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Quantitative Evaluation of Samples

e Previous procedure for evaluating samples (Breuleux et al 2011,
Rifai et al 2012, Bengio et al 2013):

* Generate 10000 samples from model

* Use them as training examples for Parzen density estimator
* Evaluate its log-likelihood on MNIST test data

Training
examples

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

LOG-LIKELIHOOD 214 -152 -244 32 138 24
STANDARD ERROR 1.1 2.2 54 1.9 2.0 1.6
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Question Answering, Missing Inputs
and Sktructured Oub pu,&

e Once trained, a GSN can sample from any conditional over
subsets of its inputs, so long as we use the conditional
associated with the reconstruction distribution and clamp the

right-hand side variables.

Proposition 1. If a subset (%) of the elements of X is kept
fixed (not resampled) while the remainder X~ is updated
stochastically during the Markov chain of corollary 2, but us-

ing P(Xyi1|f(Xe, Zy), Xt(i)l = (), then the asymptotic dis-
tribution T, produces samples o(f X(=9%) from the conditional
distribution 7, (X (—9)| X () = z()),
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Etxpe.rime.u&s: Structured Cownditionals

e Stochastically fill-in missing inputs, sampling from the chain that
generates the conditional distribution of the missing inputs
given the observed ones (notice the fast burn-in!)

RWNS
RWeS
RNWeeS
N WS
R WS
RWS
RWeeS
RO O
RWpeSsQ
RWNS G
NRQWNSNG
N WS G
NRQWpeSsQ

[/
22
33
s o

RS
RWOGEeesS
RWiesSs

/
Z
3
o




Nobt Just MNIST: e.xpe.ri‘.mev\!:s on TFD

e 3 hidden layer model, consecutive samples:
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Fubture Worle: Mulki-modal
Reconstruction Distributions

e All experiments: unimodal (factorial) reconstruction distribution
e Theorems require potentially multimodal one

* |n the limit of small noise, unimodal is enough (Alain & Bengio 2013)
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Gretting Rid of BackProp Altogether

e Some parts of the network may need to take stochastic hard
decisions, can’t do backprop

e Discovered an unbiased estimator of the loss gradient wrt to
binary stochastic units

hi — f(az'a Z’&) — ]-zi>sigm(a7;)
.+ g; = (h; —sigm(a;)) x L

is an unbiased estimator of the gradient of expectation of L wrt g,

e A lower variance variant has been demonstrated to learn (NIPS
2013 submission), albeit slower than backprop.

e Hinton also has a proposal for approximating gradient backprop
through feedback connections, which could be combined w/ this
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The Optimization Challenge in
Deep / Recurrent Nets

e Higher-level abstractions require highly non-linear
transformations to be learned

e Sharp non-linearities are difficult to learn by gradient

e Composition of many non-linearities = sharp non-linearity

e Exploding or vanishing gradients

i1 & Eir1
l &1 l 9& l O&t11
Oxt-1 O OXpq1
N Xi-1 - > Xt - > Xty pa—




RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)
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Cownclusions
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Radically different approach to probabilistic unsupervised
learning of generative models through learning a transition
operator

Skips the need for latent variables and approximate inference
over them

Eliminates previous limitations of probabilistic interpretations of
regularized auto-encoders

Any stochastic but smooth computational graph can be trained
by back-prop with noise injected in the deep network (not just
inputs), just like in recent dropout deep nets

Can model joint / conditional / structured outputs / missing
variables



The End

Reading material available on arxiv:

Deep Generative Stochastic Networks Trainable by

1306.1091 |cs.LG Backprop

1305.6663 | cs.LG Generalized Denoising Auto-Encoders as Generative
Models

1305.2982 | cs. LG Estimating or Propagating Gradients Through Stochastic
Neurons

1305.0445 |cs.LG Deep Learning of Representations: Looking Forward
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