Generative Stochastic Networks Trainable by Backprop

Yoshua Bengio

RepLearn Workshop @ AAAI 2013

July 15th 2013, Bellevue, WA, USA

Representation Learning

Good features essential for successful ML

- Handcrafting features vs learning them
- Good representation: captures posterior belief about explanatory causes, disentangles these

factors of variation

Representation learning: guesses
 the features / factors / causes =
 good representation of observed data.

Deep Representation Learning

Learn multiple levels of representation of increasing complexity/abstraction

- potentially exponential gain in expressive power
- brains are deep
- humans organize knowledge in a compositional way
- Better MCMC mixing in space of deeper representations (Bengio et al, ICML 2013)
- They work! SOTA on industrial-scale AI tasks (object recognition, speech recognition, language modeling, music modeling)

Following up on (Bengio et al NIPS'2000) Neural word embeddings - visualization

Analogical Representations for Free (Mikolov et al, ICLR 2013)

- Semantic relations appear as linear relationships in the space of learned representations
- King Queen ≈ Man Woman
- Paris France + Italy ≈ Rome

Combining Multiple Sources of Evidence with Shared Representations

- Traditional ML: data = matrix
- Relational learning: multiple sources, different tuples of variables
- Share representations of same types across data sources
- Shared learned representations help propagate information among data sources: e.g., WordNet, XWN, Wikipedia, FreeBase, ImageNet... (Bordes et al AISTATS 2012, ML J. 2013)
- FACTS = DATA
- Deduction = Generalization

Temporal Coherence and Scales

- Hints from nature about different explanatory factors:
 - Rapidly changing factors (often noise)
 - Slowly changing (generally more abstract)
 - Different factors at different time scales
- Exploit those hints to disentangle better!
- (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri & Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al 2009, Bergstra & Bengio 2009)

How do humans generalize from very few examples?

- They transfer knowledge from previous learning:
 - Representations
 - Explanatory factors
- Previous learning from: unlabeled data
 - + labels for other tasks
- Prior: shared underlying explanatory factors, in particular between P(x) and P(Y|x)
- Need good unsupervised learning of representations

Unsupervised and Transfer Learning Challenge + Transfer Learning Challenge: Deep Learning 1st Place NIPS'2011 Transfer Raw data Learning 1 layer 2 layers Challenge Paper: ICML'2012 SYLVESTER VALID: ALC=0.8511 ICML'2011 SYLVESTER VALID: ALC=0.9316 workshop on 0.9770 0.95 Unsup. & 0.9 3 layers Transfer Learning * 0.75 Area under the ROC cunve (AUC) 4 layers Log_(Number of training examples) Log_a(Number of training examples)

Latent Variables Love-Hate Relationship

- GOOD! Appealing: model explanatory factors h
- BAD! Exact inference? Nope. Just Pain.
 too many possible configurations of h
- WORSE! Learning usually requires inference and/or sampling from P(h, x)

Anonymous Latent Variables

- No pre-assigned semantics
- Learning discovers underlying factors,
 e.g., PCA discovers leading directions of variations
- Increases expressiveness of $P(x) = \sum_{h} P(x,h)$
- Universal approximators, e.g. for RBMs (Le Roux & Bengio, Neural Comp. 2008)

•

Deep Probabilistic Models

- Linear factor models (sparse coding, PCA, ICA) shallow
- Restricted Boltzmann Machines (RBMs) many variants shallow
 - Energy(x,h) = -h'Wx
- Deep Belief Nets (DBN)
 - $P(x,h_1,h_2,h_3) = P(x|h_1) P(h_1|h_2) P(h_2,h_3)$, where $P(h_2,h_3) = RBM$, conditionals = sigmoid+affine
- Deep Boltzmann Machines (DBM)
 - Energy $(x,h_1,h_2,...) = -h_1'W_1x h_2'W_2h_1-...$

Stack of RBMs Teep Boltzmann Machine

(Salakhutdinov & Hinton AISTATS 2009)

- Halve the RBM weights because each layer now has inputs from below and from above
- Positive phase: (mean-field) variational inference = recurrent AE
- Negative phase: Gibbs sampling (stochastic units)
- train by SML/PCD

Approximate Inference

- MAP
 - $h^* \cong \operatorname{argmax}_h P(h|x) \rightarrow \operatorname{assume} 1 \operatorname{dominant} \operatorname{mode}$
- Variational
 - Look for tractable Q(h) minimizing KL(Q(.)||P(.|x))
 - Q is either factorial or tree-structured
 - strong assumption
- MCMC
 - Setup Markov chain asymptotically sampling from P(h|x)
 - Approx. marginalization through MC avg over few samples
 - assume a few dominant modes
- Approximate inference can seriously hurt learning (Kulesza & Pereira NIPS'2007)

Computational Graphs

- Operations for particular task
- Neural nets' structure = computational graph for P(y | x)
- Graphical model's structure ≠ computational graph for inference
- Recurrent nets & graphical models
 - → family of computational graphs sharing parameters

 Could we have a parametrized family of computational graphs defining "the model"?

Learned Approximate Inference

- 1. Construct a computational graph corresponding to inference
 - Loopy belief prop. (Ross et al CVPR 2011, Stoyanov et al 2011)
 - Variational mean-field (Goodfellow et al, ICLR 2013)
 - MAP (Kavukcuoglu et al 2008, Gregor & LeCun ICML 2010)
- 2. Optimize parameters wrt criterion of interest, possibly decoupling from the generative model's parameters

Learning can compensate for the inadequacy of approximate inference, taking advantage of specifics of the data distribution

THE PROBLEM

Potentially HUGE Number of Modes in the Posterior P(h|x)

- Foreign speech example, y=answer to question:
 - 10 word segments
 - 100 plausible candidates per word
 - 10⁶ possible segmentations
 - Most configurations (999999/1000000) implausible
 - → 10²⁰ high-probability modes
- All known approximate inference scheme break down if the posterior has a huge number of modes (fails MAP & MCMC) and not respecting a variational approximation (fails variational)

THE SOLUTION

• Approximent anterence

Function approximation

- Deep neural nets learn good P(y|x) classifiers even if there are potentially many true latent variables involved
- Exploits structure in P(y|x) that persist even after summing h

 But how do we generalize this idea to full joint-distribution learning and answering any question about these variables, not just one?

Generative Stochastic Networks (GSN)

- Recurrent parametrized stochastic computational graph that defines a transition operator for a Markov chain whose asymptotic distribution is implicitly estimated by the model
- Noise injected in input and hidden layers
- Trained to max. reconstruction prob. of example at each step
- Example structure inspired from the DBM Gibbs chain:

Denoising Auto-Encoder (Vincent et al 2008)

- Corrupt the input during training only
- Train to reconstruct the uncorrupted input

- Encoder & decoder: any parametrization
- As good or better than RBMs for unsupervised pre-training

Denoising Auto-Encoder

Learns a vector field pointing towards
 higher probability direction (Alain & Bengio 2013)

 $r(x)-x \propto dlogp(x)/dx$

 Some DAEs correspond to a kind of Gaussian RBM with regularized Score Matching (Vincent 2011)

[equivalent when noise \rightarrow 0]

Compared to RBM:
 No partition function issue,

+ can measure training

criterion

prior: examples concentrate near a lower dimensional "manifold"

Regularized Auto-Encoders Learn a Vector Field or a Markov Chain Transition Distribution

- (Bengio, Vincent & Courville, TPAMI 2013) review paper
- (Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)

Previous Theoretical Results

(Vincent 2011, Alain & Bengio 2013)

- Continuous X
- Gaussian corruption
- Noise $\sigma \rightarrow 0$
- Squared reconstruction error | |r(X+noise)-X||²

 $(r(X)-X)/\sigma^2$ estimates the score d log p(X) / dX

Denoising Auto-Encoder Markov Chain

- $\mathcal{P}(X)$: true data-generating distribution
- ullet $\mathcal{C}(X|X)$: corruption process
- $P_{\theta_n}(X|\tilde{X})$: denoising auto-encoder trained with n examples X, \tilde{X} from $\mathcal{C}(\tilde{X}|X)\mathcal{P}(X)$, probabilistically "inverts" corruption
- ullet T_n : Markov chain over X alternating $ilde{X} \sim \mathcal{C}(ilde{X}|X)$, $\ X \sim P_{ heta_n}(X| ilde{X})$

New Theoretical Results: Denoising AE

 Denoising AE are consistent estimators of the data-generating distribution through their Markov chain, so long as they consistently estimate the conditional denoising distribution and the Markov chain converges.

Theorem 1. If $P_{\theta_n}(X|\tilde{X})$ is a consistent estimator of the true conditional distribution $\mathcal{P}(X|\tilde{X})$ and T_n defines an irreducible and ergodic Markov chain, then as $n \to \infty$, the asymptotic distribution $\pi_n(X)$ of the generated samples converges to the data generating distribution $\mathcal{P}(X)$.

Generative Stochastic Networks (GSN)

• If we decompose the reconstruction probability into a parametrized noise-dependent part $\tilde{X}=f_{\theta_1}(X,Z)$ and a noise-independent part $P_{\theta_2}(X|\tilde{X})$, we also get a consistent estimator of the data generating distribution, if the chain

converges.

Corollary 2. Let training data $X \sim \mathcal{P}(X)$ and independent noise $Z \sim \mathcal{P}(Z)$. Consider a model $P_{\theta_2}(X|f_{\theta_1}(X,Z))$ trained (over both θ_1 and θ_2) by regularized conditional maximum likelihood with n examples of (X,Z) pairs. For a given θ_1 , a random variable $\tilde{X} = f_{\theta_1}(X,Z)$ is defined. Assume that as n increases, P_{θ_2} is a consistent estimator of the true $\mathcal{P}(X|\tilde{X})$. Assume also that the Markov chain $X_t \sim P_{\theta_2}(X|f_{\theta_1}(X_{t-1},Z_{t-1}))$ (where $Z_{t-1} \sim \mathcal{P}(Z)$) converges to a distribution π_n , even in the limit as $n \to \infty$. Then $\pi_n(X) \to \mathcal{P}(X)$ as $n \to \infty$.

GSN Experiments: validating the theorem in a discrete non-parametric setting

- Corruption: add +/- small int.
- Reconstruction distribution = maximum likelihood estimator (counting)

GSN Experiments: validating the theorem in a continuous non-parametric setting

- Continuous data,
 X in R¹⁰, Gaussian corruption
- Reconstruction
 distribution =
 Parzen (mixture of
 Gaussians)
 estimator
- 5000 training examples, 5000 samples
- Visualize a pair of dimensions

GSN Experiments: validating the theorem in a continuous non-parametric setting

Shallow Model: Generalizing the Denoising Auto-Encoder Probabilistic Interpretation

- Classical denoising auto-encoder architecture, single hidden layer with noise only injected in input
- Factored Bernouilli reconstruction prob. distr.
- $\tilde{X} = f_{\theta_1}(X, Z)$ = parameter-less, salt-and-pepper noise on top of X

• Generalizes (Alain & Bengio 2013): not just continuous r.v., any training criterion (as log-likelihood), not just Gaussian but any corruption (no need to be tiny to correctly estimate distribution).

Experiments: Shallow vs Deep

 Shallow (DAE), no recurrent path at higher levels, state=X only

Deep GSN:

Quantitative Evaluation of Samples

- Previous procedure for evaluating samples (Breuleux et al 2011, Rifai et al 2012, Bengio et al 2013):
 - Generate 10000 samples from model
 - Use them as training examples for Parzen density estimator
 - Evaluate its log-likelihood on MNIST test data

examples

Training

	GSN-2	DAE	RBM	DBM-3	DBN-2	MNIST
Log-likelihood	214	-152	-244	32	138	24
STANDARD ERROR	1.1	2.2	54	1.9	2.0	1.6

Question Answering, Missing Inputs and Structured Output

 Once trained, a GSN can sample from any conditional over subsets of its inputs, so long as we use the conditional associated with the reconstruction distribution and clamp the right-hand side variables.

Proposition 1. If a subset $x^{(s)}$ of the elements of X is kept fixed (not resampled) while the remainder $X^{(-s)}$ is updated stochastically during the Markov chain of corollary 2, but using $P(X_{t+1}|f(X_t,Z_t),X_{t+1}^{(s)}=x^{(s)})$, then the asymptotic distribution π_n produces samples of $X^{(-s)}$ from the conditional distribution $\pi_n(X^{(-s)}|X^{(s)}=x^{(s)})$.

Experiments: Structured Conditionals

 Stochastically fill-in missing inputs, sampling from the chain that generates the conditional distribution of the missing inputs given the observed ones (notice the fast burn-in!)

Not Just MNIST: experiments on TFD

• 3 hidden layer model, consecutive samples:

Future Work: Multi-Modal Reconstruction Distributions

- All experiments: unimodal (factorial) reconstruction distribution
- Theorems require potentially multimodal one
- In the limit of small noise, unimodal is enough (Alain & Bengio 2013)

Getting Rid of BackProp Altogether

- Some parts of the network may need to take stochastic hard decisions, can't do backprop
- Discovered an unbiased estimator of the loss gradient wrt to binary stochastic units

$$h_i = f(a_i, z_i) = \mathbf{1}_{z_i > \operatorname{sigm}(a_i)}$$

• $\hat{g}_i = (h_i - \text{sigm}(a_i)) \times L$

is an unbiased estimator of the gradient of expectation of L wrt a_i

- A lower variance variant has been demonstrated to learn (NIPS 2013 submission), albeit slower than backprop.
- Hinton also has a proposal for approximating gradient backprop through feedback connections, which could be combined w/ this

The Optimization Challenge in Deep / Recurrent Nets

- Higher-level abstractions require highly non-linear transformations to be learned
- Sharp non-linearities are difficult to learn by gradient

Composition of many non-linearities = sharp non-linearity

Exploding or vanishing gradients \mathcal{E}_{t+1} \mathbf{X}_{t-1} \mathbf{X}_{t} \mathbf{X}_{t+1} $\partial \mathbf{x}_t$ $\partial \mathbf{x}_{t+1}$ $\partial \mathbf{x}_{t-1}$ $\overline{\partial \mathbf{x}_{t-1}}$ $\partial \mathbf{x}_t$ 40 u_{t-1} u_t u_{t+1}

RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

- Clipping gradients (avoid exploding gradients)
- Leaky integration (propagate long-term dependencies)
- Momentum (cheap 2nd order)
- Initialization (start in right ballpark avoids exploding/vanishing)
- Sparse Gradients (symmetry breaking)
- Gradient propagation regularizer (avoid vanishing gradient)

Conclusions

- Radically different approach to probabilistic unsupervised learning of generative models through learning a transition operator
- Skips the need for latent variables and approximate inference over them
- Eliminates previous limitations of probabilistic interpretations of regularized auto-encoders
- Any stochastic but smooth computational graph can be trained by back-prop with noise injected in the deep network (not just inputs), just like in recent dropout deep nets
- Can model joint / conditional / structured outputs / missing variables

The End

Reading material available on arxiv:

		<u> </u>
1306.1091	cs.LG	Deep Generative Stochastic Networks Trainable by Backprop
1305.6663	cs.LG	Generalized Denoising Auto-Encoders as Generative Models
1305.2982	cs.LG	Estimating or Propagating Gradients Through Stochastic Neurons
1305.0445	cs.LG	Deep Learning of Representations: Looking Forward