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Bernoulli Noise

 Appears for thresholded responses of
 Gabor filters
 Learned part detectors
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Bernoulli Noise

We will focus on the following simplified setup:
 The parts to be learned are rigid
 Bernoulli noise in the terminal nodes 

 Foreground noise probability p to switch from 1 to 0 (due to 
occlusion, detector failure, etc)

 Background noise probability q to switch from 0 to 1 (due to clutter)
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The AND-OR Graph
The AND/OR graph (AOG) is
 a hierarchical representation
 used to represent objects through intermediary concepts such 

as parts
 the basis of the generative image grammar (Zhu and 

Mumford, 2006)

 AND nodes = composition out of parts
 OR nodes = alternate configurations (e.g. deformations)
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The AND-OR Graph

 Defined on
 The space of thresholded filter responses

 Is a Boolean function

obtained by composition of AND and OR boolean functions 
 Can be represented as a graph with AND and OR nodes
 Other AOG formulations:

 Bernoulli AOG
 Real AOG
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AND Node
 Composition of a concept from its parts

 Example
 Dog face

 Eyes, ears, nose, mouth …
 Dog Ears of type A

 Sketch type 5 at position (2,0)
 Sketch type 8 at position (1,2)
 …
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OR Node
 Alternative representations
 Example

 Dog head
 Side view
 Frontal view
 Back view 

 Dog Ears 
 Type A
 Type B
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AOG parameters
 Maximum depth d

 Usually at most 4
 Maximum branching numbers ba, bo for AND/OR nodes 

respectively
 ba usually less than 5
 bo usually less than 7

 Number of terminal nodes n,
 Let

the space of AOGs with 
 max depth d
 max branching numbers ba,bo
 n terminal nodes
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Example: Dog AOG
 Depth d=2
 Branching numbers ba=7, bo=2
 Number of terminal nodes n=15x15x18=4050
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The AND-OR Graph

 Object composed of parts with different possible appearances

Samples from the dog AOG
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Synthetic Bernoulli Data
 Samples from dog AOG corrupted by Bernoulli noise

 Switching probability q
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Concept

 Given instance space 
 A concept is a subset C⊂

 Can also be represented as a 
target function f: → {0, 1}

 There are equivalent representations

C
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Concept Learning Error
The true error err(h,C) of hypothesis h with respect to concept C

and distribution  is the probability that h will misclassify an 
instance drawn at random from 
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Capacity of AOG
 is a finite space
 From Haussler’s Theorem

examples are sufficient for any consistent hypothesis h to 
have  with probability 1-

 Define the capacity as

 We have the bound
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Example: 50-DNF
 18 types of sketches on a 15x15 grid
 Totally n=15x15x18=4050

 Assume at most 50 sketches present
 There are ~405050 templates with 50 

sketches
 k-DNF space size is about
 Capacity is ~10180

 Too large to be practical 
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Example: C(2,5,5,4050)
 Same setup 
 Space of AOG 
 Max depth 2, max branching number 5
 Capacity is

 So
examples are sufficient for any hypothesis 
consistent with the training examples to 
have                            with 99.9% probability
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Capacity of AOG with Localized Parts
 Consider the subspace 

where the first level parts are localized:
 First terminal node can be anywhere
 The other terminal nodes of the part are chosen as one of the l 

nodes close to the first one

 In this case we have
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Example: C(2,5,5,4050,450)
 Same setup
 Space of AOG 
 Max depth 2, max branching number 5
 Locality in a 5x5 window 

(l=5x5x18=450)

 Capacity is

 Reduction from 5192

k-DNF
with n primitives

AOG(d,ba,bo,n)

AOG(d,ba,bo,n)
w/ locality
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Supervised Learning AOG
 Supervised setup:

 Known And/OR Graph structure
 Object and parts are delineated in images

 E.g. by bounding boxes
 Part appearance (OR branch) is not known

 Need to learn:
 Part appearance models

 OR templates and weights
 Noise level

Dog

Ears Eyes Nose Mouth Head
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Two Step EM
EM for mixture of Bernoulli templates [Barbu et al, 2013]

 Similar to EM of Mixture of Gaussians [Dasgupta, 2000]
Say we want k clusters in {0,1}n

We will start with l~O(k ln k) clusters
Two Step EM Algorithm
1. Initialize i, i=1,…,l, as random data points, wi=1/l,

2. One EM step
3. Pruning Step
4. One EM Step



21

Two Step EM

Pruning step:
1. Remove all clusters with wi<1/4l 
2. Selected k centers furthest  from each other

1. Add one random i to S
2. For j=1 to k-1

Add to S the center with maximum distance d(i,S) 
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Theoretical Guarantees
 Under certain conditions C1-C3
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Noise Tolerant Parts
 Part learned using Two-Step EM:

 Mixture centers Ti

 Mixture weights wi

 Noise level

 Obtain noise tolerant part model:

 Detection: compare p(x) with a threshold
 For one mixture center, same as comparing

with a threshold 
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Noise Tolerant Parts
For a single mixture center, part of size d and threshold k:

 Probability of missing the part:

 Probability of a false positive 
 assuming empty background and all 1 template

 Example: d=9, q=0.1, then p10=p01<0.001.
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Supervised Learning AOG
Recursive Graph Learning 

 Learn bottom level parts first with two-step EM
 Detect the learned parts in images

 Obtain a cleaner image
 Learn next level of the graph using two-step EM
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Part Sharing Experiment
Setup:
 Dog AOG data with Bernoulli noise
 13 Noise tolerant parts 

 previously learned from data coming 
from other objects (cat, rabbit, lion, etc)

 Two learning scenarios 
 Learn the dog AOG from the 13 parts
 Learn the dog AOG directly from image 

data
 Learn parts with two-step EM first
 Learn AOG from parts
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Part Sharing Experiment

Conclusion:
 Learning from parts is easier than learning from images
 Part sharing helps

Noise level q=0.1 Noise level q=0.2
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Conclusions
 Capacity of AOG space is much smaller than k-CNF or k-DNF

 Much fewer examples needed for training
 Using part locality helps

 Learning OR components using two-step EM works
 Has theoretical guarantees when

 OR components are clearly different from each other
 Noise is not very large
 Dimensionality is large enough
 Sufficiently many examples

 Part sharing improves learning performance


