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Bernoulli Noise

m Appears for thresholded responses of
Gabor filters
Learned part detectors



Bernoulli Noise

elements (alphabet)

N\

We will focus on the following simplified setup:
m The parts to be learned are rigid

m Bernoulli noise in the terminal nodes

Foreground noise probability p to switch from 1 to 0 (due to
occlusion, detector failure, etc)

Background noise probability g to switch from 0 to 1 (due to clutter)
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The AND-OR Graph

The AND/OR graph (AOG) is

m a hierarchical representation

m used to represent objects through intermediary concepts such
as parts

m the basis of the generative image grammar (Zhu and
Mumford, 2006)

m  AND nodes = composition out of parts
m  OR nodes = alternate configurations (e.g. deformations)



The AND-OR Graph

. (e
Definedon o — {0,1}"
The space of thresholded filter responses () @
SICICIO
s a Boolean function 7 BN 7

g:<2—{0,1}
obtained by composition of AND and OR boolean functions

m Can be represented as a graph with AND and OR nodes

Other AOG formulations:
Bernoulli AOG
Real AOG



AND Node

m Composition of a concept from its parts Cﬂo
)~ <
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m Example /1 \\//
Dog face / @

m Eyes, ears, nose, mouth ...

Dog Ears of type A o o

m Sketch type 5 at position (2,0)
m Sketch type 8 at position (1,2)




OR Node

m Alternative representations

m Example
Dog head

m Side view
m Frontal view
m Back view

Dog Ears
m Type A
m TypeB




AOG parameters
Maximum depth d

Usually at most 4
Maximum branching numbers b,, b, for AND/OR nodes
respectively

b, usually less than 5

b, usually less than 7

m  Number of terminal nodes n, 2 = {0, 1}"

Let O
H(da bCLv b07 TL) C {07 1}

the space of AOGs with
max depth d
max branching numbers b,,b,
n terminal nodes



m Depth d=2
m Branching numbers b,=7, b =2

Example: Dog AOG

m Number of terminal nodes n=15x15x18=4050
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The AND-OR Graph
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Samples from the dog AOG

parts with different possible appearances
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Synthetic Bernoulli Data

m Samples from dog AOG corrupted by Bernoulli noise
Switching probability g

elements (alphabet) i ﬂDiS‘y’ Input for training
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Concept

m Given instance space
m Aconceptis a subset CCQ

m Can also be represented as a

target function f: 2 — {0, 1}

m There are equivalent representations
C=Qr={zeQ, f(x) =1}
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Concept Learning Error

The true error err,(h,C) of hypothesis h with respect to concept C
and distribution p is the probability that h will misclassify an
instance drawn at random from p

erry(h,C) = u(CAS2y,)

Q
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Capacity of AOG

H(d, by, bo,n) C {0, 1}Q is a finite space
From Haussler's Theorem
m > (1| +1n )
€

examples are sufficient for any consistent hypothesis h to
have err,(h,C) < ewith probability 1-6

Define the capacity as
C(d, ba, bo, n) = |n ‘%(d, ba, bo, n)|
We have the bound

C(d, bg, bo,n) < (bgbo)?INn
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Example: 50-DNF

18 types of sketches on a 15x15 grid
Totally n=15x15x18=4050

O — {O, 1}4050

Assume at most 50 sketches present

There are ~4050°0 templates with 50
sketches

k-DNF space size is about
Capacity is ~1018
Too large to be practical

50
24050

elements (alphabet)

<
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Example: C(2,5,5,4050)

Same setup Q2 = {0, 1}40>9

Space of AOG H(2,5,5,4050)
Max depth 2, max branching number 5
Capacity is

N
C(2,5,5,4050) < 25°1n 4050 ~ 5192 -~ §

1 1
So m > =(5192+ In <) & 5200/
€

examples are sufficient for any hypothesis
consistent with the training examples to
have err,(h,C) < e with 99.9% probability

elements (alphabet)

NN —

%
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Capacity of AOG with Localized Parts

m Consider the subspace
H(d7 bCLa b07 n, l) C H(da bCLa b07 TL)
where the first level parts are localized:

First terminal node can be anywhere
The other terminal nodes of the part are chosen as one of the |

nodes close to the first one \\ //

m In this case we have

C(d, ba, bo,n, 1) < b= 1p¢In(niPa—1)
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Example: C(2,5,5,4050,450)

Same setupQ = {0, 1}49°0
Space of AOG H(2,5,5,4050,450)
Max depth 2, max branching number 5

Locality in a 5x5 window
(I=5x5x18=450)

k-DNF
with n primitives

AOG(d,b,,b_,n)

w/ locality
Capacity is

C(2,5,5,4050,450) < 5-5%1n 4050-450% ~ 4093
Reduction from 5192
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Supervised Learning AOG

m Supervised setup:
Known And/OR Graph structure

Object and parts are delineated in images
m E.g. by bounding boxes

SRR
Part appearance (OR branch) is not known ; %7?3({%/'_
3 /LL_\—a
T
m Need to learn: s S

Part appearance models @
= OR templates and weights
= Noise level
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Two Step EM

EM for mixture of Bernoulli templates [Barbu et al, 2013]
Similar to EM of Mixture of Gaussians [Dasgupta, 2000]

Say we want k clusters in {0,1}"

We will start with I~O(k In k) clusters

Two Step EM Algorithm

1. Initialize w;, i=1,...,l, as random data points, w=1/,
o= ”[L“J” i — 1

2. One EM step

3. Pruning Step

4. One EM Step
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Two Step EM

Pruning step:
1. Remove all clusters with w<1/4|

2. Selected k centers furthest from each other

Add one random p;to S
For j=1 to k-1
Add to S the center with maximum distance d(p.,S)

d(p;, S) = min ||pu; — i
(i, 8) = min s = 1
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Theoretical Guarantees

m Under certain conditions C1-C3

Theorem 1. If m examples are generated from a mixture of k Bernoulli tem-
plates under Bernoulli noise of level q and w; > Woin for all i. Let €,0 € (0,1).
If conditions C'1 — C3 hold and in addition the following conditions hold

4 2
1. The initial number of clusters is | = In :
Wmin 5wmin
8 12k
2. The number of examples is m > In a
Wmin
4 5
3. The separation is ¢ > — In n
nb EWmin
3 12 1)? 6k
4. The dimension is n > max (min(c,O.5)E2 In (m5—|— ) s )

Then with probability at least 1 — O, the estimated templates after the round 2

of EM satisfy:
I T = Pifly < [[mean(S;) — Pilly + eg
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Noise Tolerant Parts

Part learned using Two-Step EM:
Mixture centers T,
Mixture weights w.
Noise level g

Obtain noise tolerant part model:
k

p(x) = (1 -9* > wi(g/(1 —q))l*Till

i=1
Detection: compare p(x) with a threshold

For one mixture center, same as comparing ||x — T||1
with a threshold
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Noise Tolerant Parts

For a single mixture center, part of size d and threshold k:

Probability of mlssmg the part:

plo—l—L\)qu—q)w -

=0
Probability of a false positive
m assuming empty background and all 1 template

N i
Po1 = ) (Z.)q (1-9)

1=0

m Example: d=9, q=0.1, then p,;=p,:<0.001.
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Supervised Learning AOG

Recursive Graph Learning
Learn bottom level parts first with two-step EM

Detect the learned parts in images
m Obtain a cleaner image

Learn next level of the graph using two-step EM
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Part Sharing Experiment

Setup:
m Dog AOG data with Bernoulli noise

m 13 Noise tolerant parts

previously learned from data coming
from other objects (cat, rabbit, lion, etc)

m [wo learning scenarios
Learn the dog AOG from the 13 parts

Learn the dog AOG directly from image
data

m Learn parts with two-step EM first

m Learn AOG from parts
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Prob(AQG is correct)

Part Sharing Experiment
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Noise level g=0.1

Conclusion:

Prob(AOG is correct)
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Learn from parts
Learn from sketches

Number of examples

Noise level q=0.2

m Learning from parts is easier than learning from images

m Part sharing helps
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Conclusions
m Capacity of AOG space is much smaller than k-CNF or k-DNF

Much fewer examples needed for training
Using part locality helps

m Learning OR components using two-step EM works

Has theoretical guarantees when
m OR components are clearly different from each other
m Noise is not very large
m Dimensionality is large enough
m Sufficiently many examples

m Part sharing improves learning performance
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