Rates for Inductive Learning of Compositional Models

Adrian Barbu Department of Statistics Florida State University Joint work with Song-Chun Zhu and Maria Pavlovskaia (UCLA)

Bernoulli Noise

Appears for thresholded responses of

- Gabor filters
- Learned part detectors

Bernoulli Noise

We will focus on the following simplified setup:

- The parts to be learned are rigid
- Bernoulli noise in the terminal nodes
 - Foreground noise probability p to switch from 1 to 0 (due to occlusion, detector failure, etc)
 - Background noise probability q to switch from 0 to 1 (due to clutter)

The AND-OR Graph

- The AND/OR graph (AOG) is
- a hierarchical representation
- used to represent objects through intermediary concepts such as parts
- the basis of the generative image grammar (Zhu and Mumford, 2006)
- AND nodes = composition out of parts
- OR nodes = alternate configurations (e.g. deformations)

The AND-OR Graph

Defined on Ω = {0, 1}ⁿ
 The space of thresholded filter responses

Is a Boolean function

 $g:\Omega \to \{0,1\}$

obtained by composition of AND and OR boolean functions

- Can be represented as a graph with AND and OR nodes
- Other AOG formulations:
 - Bernoulli AOG
 - Real AOG

AND Node

Composition of a concept from its parts

elements (alphabet)

Example

- Dog face
 - Eyes, ears, nose, mouth ...
- Dog Ears of type A
 - Sketch type 5 at position (2,0)
 - Sketch type 8 at position (1,2)
 - **—** ...

OR Node

- Alternative representations
- Example
 - Dog head
 - Side view
 - Frontal view
 - Back view
 - Dog Ears
 - Type A
 - Type B

AOG parameters

- Maximum depth d
 - Usually at most 4
- Maximum branching numbers b_a, b_o for AND/OR nodes respectively
 - b_a usually less than 5
 - b_o usually less than 7
- Number of terminal nodes n, $\Omega = \{0, 1\}^n$

Let

$$\mathcal{H}(d,b_a,b_o,n)\subset \{0,1\}^{\Omega}$$

the space of AOGs with

- max depth d
- max branching numbers b_a,b_o
- n terminal nodes

Example: Dog AOG

Depth d=2

- Branching numbers $b_a = 7$, $b_o = 2$
- Number of terminal nodes n=15x15x18=4050

The AND-OR Graph

Object composed of parts with different possible appearances

Samples from the dog AOG

Synthetic Bernoulli Data

Samples from dog AOG corrupted by Bernoulli noise
 Switching probability q

Concept

Given instance space Ω
A concept is a subset C⊂Ω

• Can also be represented as a target function $f: \Omega \rightarrow \{0, 1\}$

There are equivalent representations

$$C = \Omega_f = \{x \in \Omega, f(x) = 1\}$$

Concept Learning Error

The true error $err_{\mu}(h, C)$ of hypothesis *h* with respect to concept C and distribution μ is the probability that *h* will misclassify an instance drawn at random from μ

$$err_{\mu}(h,C) = \mu(C \Delta \Omega_h)$$

Capacity of AOG

 H(d, b_a, b_o, n) ⊂ {0, 1}^Ω is a finite space
From Haussler's Theorem m ≥ ¹/_ϵ(ln |H| + ln ¹/_δ) examples are sufficient for any consistent hypothesis h to have err_µ(h, C) < ϵ with probability 1-δ
Define the capacity as

 $C(d, b_a, b_o, n) = \ln |\mathcal{H}(d, b_a, b_o, n)|$

We have the bound

 $C(d, b_a, b_o, n) \le (b_a b_o)^d \ln n$

Example: 50-DNF

18 types of sketches on a 15x15 grid
Totally n=15x15x18=4050

 $\Omega = \{0, 1\}^{4050}$

- Assume at most 50 sketches present
- There are ~4050⁵⁰ templates with 50 sketches
- k-DNF space size is about 2^{4050⁵⁰}
- Capacity is ~10¹⁸⁰
- Too large to be practical

elements (alphabet)

Example: C(2,5,5,4050)

- Same setup $\Omega = \{0, 1\}^{4050}$
- Space of AOG $\mathcal{H}(2, 5, 5, 4050)$
- Max depth 2, max branching number 5

Capacity is

 $C(2, 5, 5, 4050) < 25^2 \ln 4050 \approx 5192$

So $m \ge \frac{1}{\epsilon}(5192 + \ln \frac{1}{\delta}) \approx 5200/\epsilon$ examples are sufficient for any hypothesis consistent with the training examples to have $err_{\mu}(h, C) < \epsilon$ with 99.9% probability elements (alphabet)

Capacity of AOG with Localized Parts

Consider the subspace

$$\mathcal{H}(d, b_a, b_o, n, l) \subset \mathcal{H}(d, b_a, b_o, n)$$

where the first level parts are localized:

- First terminal node can be anywhere
- The other terminal nodes of the part are chosen as one of the l nodes close to the first one

In this case we have

 $C(d, b_a, b_o, n, l) \leq b_a^{d-1} b_o^d \ln(n l^{b_a-1})$

Example: C(2,5,5,4050,450)

- Same setup $\Omega = \{0, 1\}^{4050}$
- Space of AOG $\mathcal{H}(2, 5, 5, 4050, 450)$
- Max depth 2, max branching number 5
- Locality in a 5x5 window (I=5x5x18=450)

Capacity is $C(2, 5, 5, 4050, 450) < 5 \cdot 5^2 \ln 4050 \cdot 450^4 \approx 4093$ Reduction from 5192

Supervised Learning AOG

- Supervised setup:
 - Known And/OR Graph structure
 - Object and parts are delineated in images
 - E.g. by bounding boxes
 - Part appearance (OR branch) is not known

Need to learn:

- Part appearance models
 - OR templates and weights
 - Noise level

Two Step EM

EM for mixture of Bernoulli templates [Barbu et al, 2013]

- Similar to EM of Mixture of Gaussians [Dasgupta, 2000]
- Say we want k clusters in {0,1}ⁿ

We will start with I~O(k In k) clusters

Two Step EM Algorithm

- 1. Initialize μ_i , i=1,...,I, as random data points, w_i =1/I, $\sigma = \min_{i,j} \|\mu_i - \mu_j\|_1$
- 2. One EM step
- 3. Pruning Step
- 4. One EM Step

Two Step EM

Pruning step:

- 1. Remove all clusters with $w_i < 1/41$
- 2. Selected k centers furthest from each other
 - 1. Add one random μ_i to S
 - 2. For j=1 to k-1

Add to S the center with maximum distance $d(\mu_i,S)$

$$d(\mu_i, S) = \min_{j \in S} \|\mu_i - \mu_j\|_1$$

Theoretical Guarantees

Under certain conditions C1-C3

Theorem 1. If m examples are generated from a mixture of k Bernoulli templates under Bernoulli noise of level q and $w_i > w_{min}$ for all i. Let $\epsilon, \delta \in (0, 1)$. If conditions C1 - C3 hold and in addition the following conditions hold

1. The initial number of clusters is
$$l = \frac{4}{w_{min}} \ln \frac{2}{\delta w_{min}}$$

2. The number of examples is
$$m \ge \frac{8}{w_{min}} \ln \frac{12k}{\delta}$$
.

3. The separation is
$$c > \frac{4}{nB} \ln \frac{5n}{\epsilon w_{min}}$$
.

4. The dimension is
$$n > \max\left(\frac{3}{\min(c, 0.5)E^2} \ln \frac{12(m+1)^2}{\delta}, \frac{6k}{\delta}\right).$$

Then with probability at least $1 - \delta$, the estimated templates after the round 2 of EM satisfy:

$$\|\mathbf{T}_i^{(2)} - \mathbf{P}_i\|_1 \le \|\text{mean}(S_i) - \mathbf{P}_i\|_1 + \epsilon q$$

Noise Tolerant Parts

- Part learned using Two-Step EM:
 - Mixture centers T_i
 - Mixture weights w_i
 - Noise level \widehat{q}
- Obtain noise tolerant part model:

$$p(\mathbf{x}) = (1 - \hat{q})^d \sum_{i=1}^k w_i (\hat{q}/(1 - \hat{q}))^{\|\mathbf{x} - \mathbf{T}_i\|_1}$$

- Detection: compare p(x) with a threshold
- For one mixture center, same as comparing ||x T||₁ with a threshold

Noise Tolerant Parts

For a single mixture center, part of size d and threshold k:

Probability of missing the part:

$$p_{10} = 1 - \sum_{i=0}^{k} {\binom{d}{i}} q^{i} (1-q)^{d-i}$$

Probability of a false positive

assuming empty background and all 1 template

$$p_{01} = \sum_{i=0}^{k} {d \choose i} q^{d-i} (1-q)^{i}$$

Example: d=9, q=0.1, then $p_{10}=p_{01}<0.001$.

Supervised Learning AOG

Recursive Graph Learning

- Learn bottom level parts first with two-step EM
- Detect the learned parts in images
 - Obtain a cleaner image
- Learn next level of the graph using two-step EM

Part Sharing Experiment

Setup:

- Dog AOG data with Bernoulli noise
- 13 Noise tolerant parts
 - previously learned from data coming from other objects (cat, rabbit, lion, etc)

Two learning scenarios

- Learn the dog AOG from the 13 parts
- Learn the dog AOG directly from image data
 - Learn parts with two-step EM first
 - Learn AOG from parts

 $\checkmark \perp \frown \lor$ <r/>
</r> リリアメイニ 们们在在下 ドラタのか! $\mathbb{N} \subset \mathbb{C} \oplus \mathbb{O} \setminus \mathbb{C}$ ~ > フオ $\leq \neq \langle \rangle$ $\angle \angle$ 2777579

Part Sharing Experiment

Conclusion:

Learning from parts is easier than learning from images
Part sharing helps

Conclusions

Capacity of AOG space is much smaller than k-CNF or k-DNF

- Much fewer examples needed for training
- Using part locality helps
- Learning OR components using two-step EM works
 - Has theoretical guarantees when
 - OR components are clearly different from each other
 - Noise is not very large
 - Dimensionality is large enough
 - Sufficiently many examples

Part sharing improves learning performance