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Bernoulli Noise

 Appears for thresholded responses of
 Gabor filters
 Learned part detectors
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Bernoulli Noise

We will focus on the following simplified setup:
 The parts to be learned are rigid
 Bernoulli noise in the terminal nodes 

 Foreground noise probability p to switch from 1 to 0 (due to 
occlusion, detector failure, etc)

 Background noise probability q to switch from 0 to 1 (due to clutter)
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The AND-OR Graph
The AND/OR graph (AOG) is
 a hierarchical representation
 used to represent objects through intermediary concepts such 

as parts
 the basis of the generative image grammar (Zhu and 

Mumford, 2006)

 AND nodes = composition out of parts
 OR nodes = alternate configurations (e.g. deformations)
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The AND-OR Graph

 Defined on
 The space of thresholded filter responses

 Is a Boolean function

obtained by composition of AND and OR boolean functions 
 Can be represented as a graph with AND and OR nodes
 Other AOG formulations:

 Bernoulli AOG
 Real AOG
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AND Node
 Composition of a concept from its parts

 Example
 Dog face

 Eyes, ears, nose, mouth …
 Dog Ears of type A

 Sketch type 5 at position (2,0)
 Sketch type 8 at position (1,2)
 …
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OR Node
 Alternative representations
 Example

 Dog head
 Side view
 Frontal view
 Back view 

 Dog Ears 
 Type A
 Type B
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AOG parameters
 Maximum depth d

 Usually at most 4
 Maximum branching numbers ba, bo for AND/OR nodes 

respectively
 ba usually less than 5
 bo usually less than 7

 Number of terminal nodes n,
 Let

the space of AOGs with 
 max depth d
 max branching numbers ba,bo
 n terminal nodes
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Example: Dog AOG
 Depth d=2
 Branching numbers ba=7, bo=2
 Number of terminal nodes n=15x15x18=4050
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The AND-OR Graph

 Object composed of parts with different possible appearances

Samples from the dog AOG
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Synthetic Bernoulli Data
 Samples from dog AOG corrupted by Bernoulli noise

 Switching probability q
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Concept

 Given instance space 
 A concept is a subset C⊂

 Can also be represented as a 
target function f: → {0, 1}

 There are equivalent representations

C


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Concept Learning Error
The true error err(h,C) of hypothesis h with respect to concept C

and distribution  is the probability that h will misclassify an 
instance drawn at random from 
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Capacity of AOG
 is a finite space
 From Haussler’s Theorem

examples are sufficient for any consistent hypothesis h to 
have  with probability 1-

 Define the capacity as

 We have the bound
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Example: 50-DNF
 18 types of sketches on a 15x15 grid
 Totally n=15x15x18=4050

 Assume at most 50 sketches present
 There are ~405050 templates with 50 

sketches
 k-DNF space size is about
 Capacity is ~10180

 Too large to be practical 
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Example: C(2,5,5,4050)
 Same setup 
 Space of AOG 
 Max depth 2, max branching number 5
 Capacity is

 So
examples are sufficient for any hypothesis 
consistent with the training examples to 
have                            with 99.9% probability
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Capacity of AOG with Localized Parts
 Consider the subspace 

where the first level parts are localized:
 First terminal node can be anywhere
 The other terminal nodes of the part are chosen as one of the l 

nodes close to the first one

 In this case we have
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Example: C(2,5,5,4050,450)
 Same setup
 Space of AOG 
 Max depth 2, max branching number 5
 Locality in a 5x5 window 

(l=5x5x18=450)

 Capacity is

 Reduction from 5192

k-DNF
with n primitives

AOG(d,ba,bo,n)

AOG(d,ba,bo,n)
w/ locality



19

Supervised Learning AOG
 Supervised setup:

 Known And/OR Graph structure
 Object and parts are delineated in images

 E.g. by bounding boxes
 Part appearance (OR branch) is not known

 Need to learn:
 Part appearance models

 OR templates and weights
 Noise level

Dog

Ears Eyes Nose Mouth Head
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Two Step EM
EM for mixture of Bernoulli templates [Barbu et al, 2013]

 Similar to EM of Mixture of Gaussians [Dasgupta, 2000]
Say we want k clusters in {0,1}n

We will start with l~O(k ln k) clusters
Two Step EM Algorithm
1. Initialize i, i=1,…,l, as random data points, wi=1/l,

2. One EM step
3. Pruning Step
4. One EM Step
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Two Step EM

Pruning step:
1. Remove all clusters with wi<1/4l 
2. Selected k centers furthest  from each other

1. Add one random i to S
2. For j=1 to k-1

Add to S the center with maximum distance d(i,S) 
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Theoretical Guarantees
 Under certain conditions C1-C3
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Noise Tolerant Parts
 Part learned using Two-Step EM:

 Mixture centers Ti

 Mixture weights wi

 Noise level

 Obtain noise tolerant part model:

 Detection: compare p(x) with a threshold
 For one mixture center, same as comparing

with a threshold 
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Noise Tolerant Parts
For a single mixture center, part of size d and threshold k:

 Probability of missing the part:

 Probability of a false positive 
 assuming empty background and all 1 template

 Example: d=9, q=0.1, then p10=p01<0.001.
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Supervised Learning AOG
Recursive Graph Learning 

 Learn bottom level parts first with two-step EM
 Detect the learned parts in images

 Obtain a cleaner image
 Learn next level of the graph using two-step EM
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Part Sharing Experiment
Setup:
 Dog AOG data with Bernoulli noise
 13 Noise tolerant parts 

 previously learned from data coming 
from other objects (cat, rabbit, lion, etc)

 Two learning scenarios 
 Learn the dog AOG from the 13 parts
 Learn the dog AOG directly from image 

data
 Learn parts with two-step EM first
 Learn AOG from parts
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Part Sharing Experiment

Conclusion:
 Learning from parts is easier than learning from images
 Part sharing helps

Noise level q=0.1 Noise level q=0.2
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Conclusions
 Capacity of AOG space is much smaller than k-CNF or k-DNF

 Much fewer examples needed for training
 Using part locality helps

 Learning OR components using two-step EM works
 Has theoretical guarantees when

 OR components are clearly different from each other
 Noise is not very large
 Dimensionality is large enough
 Sufficiently many examples

 Part sharing improves learning performance


