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Reasoning & Learning: 
Two perspectives on knowledge representation

‣For reasoning with a model:  

• Expressiveness of the model (e.g. space, objects, ...)

• Planning with the model is useful for a robot

‣For learning to predict the consequences of a robotʼs behaviour:

• Semantics defined by the robotʼs future experience 

• Online, scalable learning during normal robot operation
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An Analogy with Scientific Knowledge

‣ Reasoning and learning have complementary strengths that are analogous 
to scientific theories and experiments.

• Scientific theories enable broad generalization within a limited domain.  
Scientific theories enable effective reasoning even when inaccurate. 

• Experiments measure the world without needing model assumptions.
Many experiments are needed to understand the world.

‣ Two approaches for connecting theories and experiments.

• Top-down: Theories have experimentally verifiable predictions.

• Bottom-up: Many verifiable predictions can generalize to a single theory.

• Note: A single prediction a (very) partial model of the world.
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Rich representations that 
support reasoning
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Reasoning with rich 
representations

‣Useful analogs to human-scale abstractions can be 
constructed from robot experience.

• The robot constructs models from its sensorimotor 
experience by searching for particular statistical 
structures.

• The models describe spaces and objects.

• The robot reasons within these models to achieve goals.
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Representing sensor 
configurations (Modayil, 2010)

‣Sensors in similar physical configurations yield 
highly correlated time-series data. (e.g. GP assumption)

‣Invert this: use time-series data to construct a 
manifold of sensor configurations. 
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Learned geometry 
from real robot data
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Cosy Localization Database

Method: 
1. Define local distances between strongly correlated sensors 
2. Use the fast maximum variance unfolding algorithm to construct a manifold

Conclusion:  A robotʼs experience can contain enough information to recover 
approximate local sensor geometry (and perhaps global geometry).



Representing Objects
(Modayil & Kuipers,  2007)

‣Intuition: Moving objects can be distinguished 
from a static world.

‣Approach: Use violations of a stationary 
background model to perceive moving objects.
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Objects: 
Background Model
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The agent has a model of the 
static environment

‣Occupancy grid

‣Observation model
(pose,map) → observation

‣Operators to move the robot to 
a target pose

‣Update of the map and robot 
pose at each time-step



Objects: 
Perception

Method

1. Consider sensor readings that 
violate expectations of 
a static model.

2. Cluster them in space and then 
time.

3. Compute new perceptual features 
from the clusters.
   distance = average sensor reading
   angle = average sensor location



Objects:
Learned Shapes
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Note: shape 
models have size 
information



Objects:
Learning Operators
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Method: 

1. Perform motor babbling to collect data.

2. Use batch learning to find 
contexts and motor outputs
that reliably change an attribute every 
timestep (one second timesteps).

3. Evaluate the learned operators.

Operator 4: Decrease distance to object 

Description: distance(τ), decrease, δ < -0.19 

Context: distance(τ) ≥ 0.43
               angle(τ) ≤ 132
               angle(τ) ≥ 69

Motor outputs: (0.2 m/s, 0.0 rad/s)



Objects:
Using Operators
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location(τ)
dir[robot-heading]

angle(τ)
increasingdistance(τ)
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Learning models that 
support reasoning

‣Representations that support human-scale abstract 
reasoning can be learned from sensorimotor experience.

• Is a robotʼs sensorimotor stream sufficient for learning all 
useful knowledge?

‣How can the learning process be improved?

• Simple unified semantics with broad applicability 

• Clarify assumptions

• Incremental learning algorithms

• Remove need for human oversight
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Rich representations that 
support learning
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Learning to make 
predictions

‣A prediction is a claim about a robotʼs future experience.

• Predictions verified by experiments are the foundation of 
scientific knowledge.

• Thus, the semantics of experimentally verifiable predictions 
could be a useful foundation for a robotʼs knowledge.

• An efficient online, incremental algorithm would enable the 
robot to make and learn many such predictions in parallel.

• e.g. Temporal-difference reinforcement learning algorithms.
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General value functions (GVF) 

these four functions define the semantics of an 
experimentally verifiable prediction 

policy

pseudo reward

termination

terminal reward

Qπ(s, a) = E
�
r1 + γr2 + γ2r3 + · · · | s0=s, a0=a, a1:∞∼π

�

Qπ(s, a) = E[r1 + · · ·+ rk + zk | s0=s, a0=a, a1:k∼π, k∼γ]

Qπ,r,γ,z(s, a) = E[r(s1) + · · ·+ r(sk) + z(sk) | s0=s, a0=a, a1:k∼π, k∼γ]

Qπ,r,γ,z(s, a) =
�

s�

P (s�|s, a)
�
r(s�) + γ(s�)

�

a�

π(a�|s�)Qπ,r,γ,z(s�, a�) + (1− γ(s�))z(s�)

�

δ(s, a, s�; Q̂) = r(s�) + γ(s�)
�

a�

π(a�|s�)Q̂(s�, a�) + (1− γ(s�))z(s�)− Q̂(s, a)

δt = r(st+1) + γ(st+1)
�

a�

π(a�|st+1)Q̂(st+1, a
�) + (1− γ(st+1))z(st+1)− Q̂(s, a)

π : A× S −→ [0, 1]

r : S −→ R

γ : S −→ [0, 1]

z : S −→ R

2

V π,γ,r,z(s) = E[r(s1) + . . . + r(sk) + z(sk)|s0 = s, a0:k ∼ π, k ∼ γ]

The Experimental Question
By selecting actions with the policy, 
how much reward will be received

before termination?

Note 1: A GVF is a value function, but with a generic reward and termination.
Note 2: A constant termination probability corresponds to a timescale.



The Horde Architecture 
(Sutton et al, 2011)

Non-linear 
sparse re-coder 
(e.g., tile coding)

sensorimotor
data

...

predictions

demons

sparse, mostly-binary,
feature representation

PSR
Each demon is
a full RL agent
estimating a
general value 
function
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Sparsely activated 
binary features φt.

(#active << #features)}
Each computed 
prediction (p) is 
a linear function 
of the features
p = <θt,Φt>

The weights (θ) can be 
learned incrementally 

in O(#features) time/step by 
TD(λ) or related algorithms. 

}

GVF predictions can be learned in parallel and online.



The firehose of experience

Timesteps (0.1 second)

 Normalized Sensor Values



Predictions
 of a Light 
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The predictions learned online by 
TD(λ) are comparable to the ideal 
predictions and approach the accuracy 
of the best weight vector.
(shown after 3 hours of experience)

r = Light3
γ = 0.9875

π = Robot behaviour
z = 0



Scales to thousands of predictions 
(Modayil, White, Sutton, 2012)

The 2000+ predictions 

use 6000+ shared 
features,

shared parameters, 

cover all sensors &
many state bits,

cover 4 timescales
(0.1, 0.5, 2, and 8 

seconds),

and update
every 55ms0 30 60 90 120 150 180

Minutes

Median
Mean

Unit
Variance

Acceleration MotorTemperature OverheatingFlag
Light MotorSpeed IR
MotorCurrent IRLight Thermal
LastAction RotationalVelocity Magnetic
MotorCommand

Cumulative mean squared error normalized 
 by dataset sample variance

All experience & learning performed within hours!



Learning predictions about 
different policies

‣Off-policy learning enables the robot to learn the 
consequences of following different policies from 
a single stream of experience.

‣Gradient temporal-difference algorithms provide 
stable, incremental, off-policy learning.(Maei & Sutton, 
2009)

‣Works at scale with robots. (White, Modayil, Sutton, 2012)
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Summary

‣Abstract models can be learned from sensorimotor experience.

• Learned models of sensor space and objects that support 
goal-directed planning.

‣  A broad class of predictive knowledge can be learned at scale.

• General value function predictions express an expected 
consequence of a precise experiment.

• Temporal-difference algorithms can learn to make such 
predictions incrementally during normal robot experience.

‣Robots could benefit from a tighter integration between learning 
from experience and reasoning with models.
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