Using Analogy Discovery to Create Abstractions

Marc Pickett

Cognition, Robotics, and Learning
University of Maryland, Baltimore County,
marc@coral.cs.umbc.edu

Concept formation is a form of abstraction that allows for knowledge transfer,
generalization, and compact representation. Concepts are useful for the creation
of a generally intelligent autonomous agent. If an autonomous agent is experienc-
ing a changing world, then nearly every experience it has will be unique in that
it will have at least slight differences from other experiences. Concepts allow an
agent to generalize these experiences and other data. In some applications, the
concepts that an agent uses are explicitly provided by a human programmer. A
problem with this approach is that the agent encounters difficulties when it faces
situations that the programmer had not anticipated. For this reason, it would be
useful for the agent to automatically form concepts in an unsupervised setting.
The agent should be able to depend as little as possible on representations tai-
lored by humans, and therefore it should develop its own representations from
raw uninterpreted data.

One purpose of concept formation (and abstraction in general) is to concisely
characterize a set of data [7]. With this view, one can use minimum description
length as a guiding principle for concept formation. My research uses this prin-
ciple to form an ontology of concepts from a collection of data. This data is
a set (or a stream) of statements, where each statement is an ordered tuple
of symbols (representing relations). The symbols have no meaning for the pro-
gram other than they’re considered to be ground statements. For example, these
symbols can be raw sensor data, or raw descriptions of chess games.

For SARA 2005, Tim Oates and I developed an ontology formation algorithm
called The Cruncher [6] that works on attribute-value data. The Cruncher (an
extension of PolicyBlocks [5], an algorithm for discovering useful macro-actions
in Reinforcement Learning that I developed with Andy Barto) is a simple rep-
resentation framework and algorithm based on minimum description length for
automatically forming an ontology of concepts from attribute-value data sets.
Although unsupervised, when The Cruncher is applied to the Zoo database from
[1], it produces a nearly zoologically accurate categorization. The Cruncher can
also be applied to find useful macro-actions in Reinforcement Learning, learn
models from uninterpreted sensor data, or form an ontology of documents based
on word-frequency.

It’s useful to be able to develop relational concepts through analogy. Some
suggest that analogy may even be the “core of cognition” [3]. Analogy allows us
to focus on the relations among entities rather than superficial aspects of the
entities. For example, we might notice that a red ant killing a black ant and
stealing a piece of food it is analogous to a situation in Hamlet where Claudius
murders Hamlet’s father and usurps the throne of Denmark. In this situation, we



must also be able to specify that the red ant corresponds to Claudius, the black
ant to Hamlet’s father, and the piece of food maps to the throne. Once found,
relational concepts can be useful for knowledge transfer: conclusions about one
domain can map to another domain.

Currently, I'm extending The Cruncher to work on relational data. The ex-
tended algorithm, The Ubercruncher, discovers isomorphisms (or analogies) in
relational data, and forms concepts from the analogies to compress the data. Af-
ter finding a set of analogies, the best analogy is used to compress the Knowledge
Base, resulting in a shorter description. This entire process (finding analogies
and crunching with them) is repeated until no more useful analogies are found.
In practice, useful analogies are often found as parts of other analogies, which
produces a multi-tiered ontology.

The Ubercruncher is related to the SUBDUE system [4] which compresses
graphs by finding common substructures. Both SUBDUE and The Ubercruncher
work on data that’s not presegmented, and both use minimum description length
as the guiding principle by which substructures are evaluated. Like The Uber-
cruncher, SUBDUE also does induction in the sense that frequently occur-
ring substructures are replaced by a node that symbolizes the full substruc-
ture. However, SUBDUE uses a potentially slow beam search, upon which The
Ubercruncher improves by building a conceptual structure that can be used to
accelerate learning and classification into a current ontology. Additionally, The
Ubercruncher represents both concepts and meta-concepts in the same frame-
work so that the same algorithm can be used to find analogies in both data and
meta-data. Ignoring differences in representation and search strategy, SUBDUE
is essentially a strictly bottom-up version of The fjbercruncher, which also uses
top-down guidance for classification, similar to that described by [2].

Future work involves developing a full cognitive architecture, dubbed The
Marchitecture, that uses the ontology developed by The Ubercruncher for rea-
soning, planning, classification, and explanation, and integrates these processes
with formation of the ontology.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

2. Hawkins, J., and Blakeslee, S. 2004. On Intelligence. Times Books.

3. D. R. Hofstadter. Analogy as the core of cognition. The Analogical Mind: Perspec-
tives from Cognitive Science, pages 499-538, 2001.

4. L. Holder, D. Cook, and S. Djoko. Substructure discovery in the subdue system. In
Proceedings of the Workshop on Knowledge Discovery in Databases, 1994.

5. M. Pickett and A. Barto. Policyblocks: An algorithm for creating useful macro-
actions in reinforcement learning. In Proceedings of the International Conference
on Machine Learning, 2002.

6. M. Pickett and T. Oates. The cruncher: Automatic concept formation using min-
imum description length. In proceedings of the 6th International Symposium on
Abstraction, Reformulation and Approzimation (SARA), 2005.

7. J. G. Wolff. Information compression by multiple alignment, unification and search
as a unifying principle in computing and cognition. Artif. Intell. Rev., 2003.



