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Abstract
We propose using deep learning as the “workhorse” of a cog-
nitive architecture. We show how deep learning can be lever-
aged to learn representations, such as a hierarchy of analog-
ical schemas, from relational data. This approach to higher
cognition drives some desiderata of deep learning, particu-
larly modality independence and the ability to make top-down
predictions. Finally, we consider the problem of how rela-
tional representations might be learned from sensor data that
is not explicitly relational.

Deep Learning as a Workhorse for Cognition
We consider the hypothesis, suggested by neuroanatomy
(Mountcastle 1978), that higher level cognition is built on
the same fundamental building blocks as low-level percep-
tion. Likewise, we propose that learning high-level represen-
tations uses many of the same mechanisms as learning per-
ceptual features from low-level sensors, which is essentially
what deep learning systems do.

In our work, we assume that such a system —a system
that not only learns a feature hierarchy from a collection
of fixed-width vectors, but also uses the feature hierarchy
to parse new vectors and make predictions about missing
values— can be used as the workhorse for learning and rea-
soning. We assume that such a system is modality indepen-
dent and learns a feature hierarchy with relevant invariances
for whatever modality it is trained on, given enough training
data. For example, given a large number of images, the sys-
tem should learn features such as visual objects with invari-
ance to rotation, translation, and scale. A copy of the same
initial (untrained) system, given ample speech data, should
learn phonemes and words with invariance to pitch, speed,
and speaker. Some evidence suggests that the perceptual cor-
tex is capable of such plasticity (Sur and Rubenstein 2005).
There are already deep learning systems that accomplish
part of this goal (Le et al. 2012), (LeCun 2012), but these
provide the architecture and connectivity, which implicitly
relies on knowledge of the topology of the sensor modalities
on which these systems are trained. Ideally, we would like
this network structure to be learned because, for higher-level
representations, such as that described in the next section,
the topology is unknown beforehand and must be learned.
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Though there is still work to be done by the deep learning
community before such a system is completely developed,
we consider how this system might be leveraged to learn
and use higher level representations.

Leveraging Deep Learning for Relational Data
and Logical Inference

A criticism of deep learning, and connectionism in general,
is that such systems are incapable of representing (much less
learning) relational schemas such as “sibling”. Furthermore,
deep learning has been criticized for being unable to make
simple parameterized logical inferences such as “If A loves
B and B loves C, then A is jealous of C.” (Marcus 1998).
We have taken steps to address these criticisms by show-
ing how a second (non-connectionist) system can transform
relational data into fixed-width vectors such that overlap
among these vectors corresponds to structural similarity in
the relational data. Unlike related approaches ((Socher et al.
2012), (Rachkovskij, Kussul, and Baidyk 2012), (Levy and
Gayler 2008)), our representation is able to exploit partial
analogical schemas. That is, a partial overlap in our repre-
sentation’s vectors corresponds to a common subgraph in the
corresponding structures. Furthermore, through processes of
windowing and aliasing our system is able to represent struc-
tures with hundreds of entities and relations using a few
thousand features, whereas the earlier work requires thou-
sands of features to represent structures with only a handful
of entities and relations. The details of our transformer and
the examples below are given in (Pickett and Aha 2013).

With this transformer, we can feed transformed structures
into a simple deep learning system to learn features that are
relevant for these structures. These learned features corre-
spond to analogical schemas. For example, given 126 stories
in predicate form (Thagard et al. 1990), our system produces
a feature hierarchy of stories (corresponding to plot devices),
part of which is shown in Figure 1. In this figure we see a
“Double Suicide” analogical schema found in both Romeo &
Juliet and in Julius Caesar. In the former, Romeo thinks that
Juliet is dead, which causes him to kill himself. Juliet, who
is actually alive, finds that Romeo has died, which causes
her to kill herself. Likewise, in Julius Caesar, Cassius kills
himself after hearing of Titinius’s death. Titinius, who is ac-
tually alive, sees Cassius’s corpse, and kills himself. The
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largest schema found (in terms of number of outgoing edges)
was that shared by Romeo & Juliet and West Side Story,
which are both stories about lovers from rival groups. The
latter doesn’t inherit from the Double Suicide schema be-
cause Maria (the analog of Juliet), doesn’t die in the story,
and Tony (Romeo’s analog) meets his death by murder, not
suicide. Some of the schemas found were quite general. For
example, the oval on the lower right with 6 incoming edges
and 3 outgoing edges corresponds to the schema of “a single
event has two significant effects”. And the oval above the
Double Suicide oval corresponds to the schema of “killing
to avenge another killing”.

Figure 1: Part of the feature hierarchy our system learned
from a story dataset. Grey boxes on the left correspond
to instances (individual stories). The black ovals represent
higher level concepts. The “raw” features are omitted due
to space limitations. Instead, we show the outgoing edges
from each black oval. The high level concepts correspond
to shared structural features, or analogical schemas. E.g.,
the marked oval represents a Double Suicide schema, which
happens in both Romeo & Juliet and in Julius Caesar.

Once the relational structures are transformed, the process
of retrieving analogs is exactly the same algorithm as that
for recognizing visual objects given a visual feature hierar-
chy, namely parsing a fixed-width vector into its component
features. By this process, we are able to efficiently retrieve
analogs in logarithmic time (in the number of total stories)
compared to linear time for the MAC/FAC algorithm (For-

bus, Gentner, and Law 1995). Table 1 shows an empirical
comparison of analog retrieval on the story dataset of our
system and MAC/FAC, where our system yields an order-
of-magnitude speedup (in terms of vector comparisons) at a
small loss in accuracy. For further details, please see (Pickett
and Aha 2013).

Accuracy Avg. # Comparisons
MAC/FAC 100.00% ± .00% 100.00 ± .00
Pickett & Aha 95.45% ± .62% 15.43 ± .20

Table 1: Speed/Accuracy Comparison

Parsing and top-down prediction may be used together
with a non-connectionist chaining algorithm to perform
rudimentary logical inference. Briefly, the chaining algo-
rithm chains bindings where a binding is a symmetrical re-
lation stating that two variables have the same value. If A is
bound to B, and B is bound to C, then chaining infers that A
is bound to C. A simplified example of inference using pars-
ing, top-down prediction, and chaining is shown in Figure 2.
In this example, our system has learned analogical schemas
from stories of theft, diplomatic visits, and defaulted loans.
In the story of Doug, the system is told that Doug loaned
a spatula to Gary who then defaulted. Our system parses
this story, uses top-down prediction, and chaining to infer
that the spatula was lost. This example is simplified in that
it does not use windowing or feature aliasing, and the vari-
ables are atoms rather than a sparse coding, but it shows the
basic mechanisms of inference.

Note that the learned feature hierarchy in Figure 1 consists
of only conjunctive nodes. We hypothesize that disjunctive
pooling nodes will be necessary for representing and learn-
ing schemas that are superficially dissimilar, but occur in
similar contexts (just as pooling layers in deep networks al-
low for representation of invariant features). E.g., the Double
Suicide schema might be pooled with a “Revenge Killing”
schema to form a generalized “Tragic Event” schema.

Whence come Relations, Causality, & Entities?
In the previous section, our system was presented with sto-
ries already encoded in predicate form. An open question
is how stories and other relational structures can be learned
from data that is not explicitly relational. For example, given
a large number of videos of people interacting, how might
a system learn entities such as “person” or “tranquility”
and relations such as “loves”? A simpler example would
be, given a large number of static images of “billiard ball
traces”, such as that shown in Figure 3, how might a sys-
tem develop entities such as “billiard ball” and “mass” (of a
billiard ball) and relations such as “bounces off of”? We be-
lieve that this is possible in principle because a naive model
of “billiard physics” can be used to compress such images.
Note that our question differs from the questions addressed
by earlier work on relational learning ((Kemp and Tenen-
baum 2008), (Schmidt and Lipson 2009)) in that neither the
entities nor the relations are provided to our system: In the
billiard example, the primitive features correspond to pixels,
and features such as mass are not directly observable.

38



Figure 2: Basic inference us-
ing bottom-up parsing, top-down
prediction, and chaining In this
simplified example, we use a hi-
erarchy of schemas (learned from
stories shown on the lower left)
to parse the story of Doug, which
is parsed to inherit from the con-
cept at the top-right. This con-
cept has the atomic feature “loaned-
lost”, which, through top-down im-
plication, we infer to be part of
the Doug story. We then use a
non-connectionist system to inter-
pret the features in the Doug story
as bindings, and chain loaned-lost
with loaned-Spatula to infer lost-
Spatula (i.e., the spatula was lost).

Figure 3: A “Billiard
Ball” Trace. How
might a naive model
of billiard physics
be learned from
many similar static
images?

Currently, we are attempting to address this question. Our
current approach lies in investigating how a model of bil-
liard physics (and other systems) can be represented in our
framework (note that natural numbers are not innate in our
framework), investigating how multi-step inference might be
performed, developing an energy function (likely a combi-
nation of compression and speed of inference (Schmidhuber
2002)), and investigating how representations may be effi-
ciently searched to minimize this energy function.
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