
PolicyBlocks: An Algorithm for Creating
Useful Macro-Actions in Reinforcement Learning

Marc Pickett pickett@cs.umass.edu
Andrew G. Barto barto@cs.umass.edu

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts, Amherst 01003 USA

Abstract

We present PolicyBlocks, an algorithm by
which a reinforcement learning agent can
extract useful macro-actions from a set of
related tasks. The agent creates macro-
actions by finding commonalities in solutions
to previous tasks. Using these macro-actions,
learning to do future related tasks is accel-
erated. This increase in performance is il-
lustrated in a “rooms” grid-world, in which
the macro-actions found by PolicyBlocks out-
perform even hand designed macro-actions,
and in a hydroelectric reservoir control task.
We provide empirical comparisons of Policy-
Blocks with the Reuse options of Bernstein
(1999) and the SKILLS algorithm of Thrun
and Schwartz (1995), which elucidate condi-
tions under which each algorithm performs
well.

1. Introduction

There are many cases in which a set of several different
tasks is given for a single domain. When there is some
overlap among the solutions to these tasks, it is pos-
sible to use this overlap to transfer knowledge learned
from solving previous tasks to new tasks. Examples
from real life include when a fencer learns a set of skills
(parry, thrust, dodge, etc.) that are useful against any
opponent, when a chess master learns a set of opening
moves and forks that are useful in several situations,
or when a downhill skier learns a set of skills (snow-
plow, hockey stop) that are useful for several different
ski runs. One reason these skills are useful is that
they allow an agent to plan or act at a more abstract
level than the level of primitive actions. In the rein-
forcement learning (RL) paradigm, there may be a set
of tasks that have identical structure, but with differ-
ent goals. For example, in Dietterich’s Taxi domain
(Dietterich 2000), a taxi driver makes deliveries to dif-

ferent locations in an unchanging city. It has been
shown (Sutton et al., 1999) that given the right set of
temporally-extended actions (called “options”) an RL
agent can increase its learning rate dramatically.

This paper presents a method called “PolicyBlocks”
by which an agent can create useful options automat-
ically. PolicyBlocks creates options by finding com-
monly occurring subpolicies from the solutions to a set
of sample tasks. Because having different skills that
have similar effects increases the search space with lit-
tle increase in functionality, once an option has been
created, options with similar effects are no longer con-
sidered.

A number of researchers have investigated methods
for learning skills across several tasks by identifying
subgoals. The early approaches by Amarel (1968),
and Anzai and Simon (1979) created subgoals by ex-
amining solutions to previous problems. More re-
cently, Digney (1998) proposed a hierarchical method
in which states that are visited frequently or have a
high reward gradient become subgoals. Iba (1989)
discussed a heuristic approach for growing macro-
operators. McGovern (2002, McGovern and Barto
2001) used several of the ideas for this heuristic for
a method of subgoal discovery based on finding com-
monalities across multiple paths to problem solutions.

Another general technique for finding options is to ex-
amine commonalities among sample policies. Rather
than focusing on subgoals, PolicyBlocks focuses on
these commonalities, and many useful options found
by our algorithm have no clearly defined subgoal.
Bowling and Veloso (1998) discussed using policies
from similar problems for new tasks, and gave a bound
for the suboptimality of a previously learned policy
that is fixed over a subproblem. Similarly, Bernstein’s
(1999) Reuse options are probabilistically combined
solutions of previous tasks. These methods differ from
PolicyBlocks in that they do not explicitly search for
common integrated subsequences. The most closely

related work is the SKILLS algorithm of Thrun and
Schwartz (1995), which creates skills by examining
commonalities among the solutions to related tasks. In
this work, skills are “learned by minimizing the com-
pactness of action policies using a description length
argument on their representations”. A comparison of
SKILLS and PolicyBlocks is given in Section 5.

This paper is organized as follows: Section 2 contains
an introduction to RL, Markov decision processes, and
the option framework. Section 3 describes the Policy-
Blocks algorithm. Section 4 illustrates the behavior of
PolicyBlocks and related algorithms for a grid-world
and for a hydroelectric reservoir control task. Subse-
quent sections provide discussion of experimental re-
sults, limitations of the approach, and conclusions.

2. Reinforcement Learning

In the RL framework, an agent learns by interact-
ing with an environment over a series of discrete time
steps. At each time step t, the agent observes the state
of the environment, st, and chooses an action, at from
a finite set, which changes the state of the environment
to st+1 and gives the agent a reward rt+1. An envi-
ronment has the Markov property if the reward and
the next state depend on only the current state and
action, although this dependency may be stochastic,
such that there is a fixed probability P a

ss′ of going to
state s′ when taking action a in state s. A Markov
decision process (MDP) is an environment with a set
of states S, a set of actions A, a reward Ra

ss′ for ev-
ery triplet consisting of a state s, an action a, and a
next state s′, and that has the Markov property. The
agent’s goal is to maximize its return or accumulated
discounted reward

∑∞
i=0 γrt, where γ ∈ [0, 1) is the

agent’s discount rate. The agent does this by creating a
policy, which is a function that maps states to actions.
In stochastic environments, this policy should maxi-
mize the expected accumulated discounted reward. A
common strategy is to assign a value to every state-
action pair, called a Q-value, that is an estimate of
the expected return for choosing that action in that
state, and following an optimal policy thereafter. This
value can be approximated using methods such as Q-
learning (Watkins 1989).

PolicyBlocks uses the options framework developed by
Sutton et al. (1999) and Precup (2000). Options are
temporally extended actions like macro-actions. A
(Markov) option is a triple 〈I, π, β〉, where I is the
option’s input set, π is a policy defined over all states
in which the option can execute, and β is the stopping
condition. An option’s policy π is a mapping from a
subset of the states to a set of actions, which includes

both primitive actions and other options. The ter-
mination condition β is a mapping from states, s, to
probabilities, where the option terminates with prob-
ability β (s). Once an agent chooses an option, that
option’s policy is followed until a termination condi-
tion is met. For our purposes, β is set to .001 in I,
and 1 outside of I, so that an option terminates if it
leaves its input set.

3. Automatic Option Creation

Our agent is given optimal policies L =
{L1, L2, · · · , Lk} for a sample set M of k Markov
decision processes. All elements of M have the same
set of states S, the same state transition probabilities
P , but each element m has its own reward function
R (m). Each policy maps states in S to actions in
A. In cases where there are several optimal policies,
our agent is assumed to be given one according to
a fixed tie-breaking policy. Our agent has no direct
access to P or R (m). R (m) is assumed to be drawn
from a distribution R. Our agent is to use the sample
solutions L to create a set O of options that will aid
in solving, by Q-learning, further tasks drawn from
R.

PolicyBlocks uses a three step process: it generates a
set of candidate options by finding where the sample
solutions match, it scores the candidates and chooses
the highest scoring option, then subtracts what the se-
lected option “explains” from the sample solutions L.
The subtraction phase addresses the problem of op-
tion redundancy, when several options accomplish very
similar tasks. As will be explained later, the score of
an option is a heuristic for minimizing the description
length of L in terms of O. (This is part of the purpose
of the heuristic used by the SKILLS algorithm.)

A full policy is a mapping from states to actions. A
partial policy is a mapping from states to either an
action or to a special empty value ∅ (where ∅ is not
an action). Note that a full policy is also a partial
policy. The size of a partial policy, denoted |π| for
partial policy π, is the number of states over which π
is defined to be any action other than ∅.

Definition: The merge operator Mrg (π1, π2) = π3 is
the function mapping a pair of partial policies π1, π2
to a partial policy π3 such that for each state s ∈ S,
π3 (s) = ∅ if π1 (s) and π2 (s) differ, and π3 (s) = π1 (s)
(= π2 (s)) otherwise.

This function is an extension of the logical “and”
operator. Note that Mrg is commutative and as-
sociative. We define Mrg ({π1, π2, · · ·πn}) to be
Mrg (π1,Mrg (π2,Mrg (· · ·πn))). Partial policy π1

contains partial policy π2 if and only if Mrg (π1, π2) =
π2.

Using the merge operator, we can find the similarities
among the sample solutions. Naively, we can gener-
ate each of the 2k mergings of L (i.e., Mrg (L1, L2),
Mrg (L3, L5, L13), etc.). These generated partial poli-
cies become the policies for our set of candidate op-
tions. This process is adequate for small values of k,
but when L gets larger, we can generate only a sub-
set of the mergings. Since Mrg (π, ∅′) = ∅′ where ∅′
is the policy mapping all states to ∅, we can begin
by generating all pairwise mergings, and from these,
generating all triplet mergings (pruning the tree if the
mergings become null). In this way, these same general
techniques can be approximated for large k.

Before describing our partial policy scoring function,
we will describe the subtraction of an option. Once we
have selected a single partial policy π from the gener-
ated partial policies, we create an option whose input
set I is the set of all states s ∈ S such that π (s) 6= ∅,
and whose policy is π for this input set. Since this π
was generated by merging the sample policies in L, it
must be contained in at least one element of L. We re-
move each element l ∈ L that contains π, and replace
it with l−π, where l−π is defined below. If l−π = ∅′,
then there is no need to add l − π to L.

Definition: A subtraction operator π1 − π2 = π3 is
a function mapping a pair of partial policies π1, π2 to
a partial policy π3 such that for each state s ∈ S,
π3 (s) = π1 (s) if π2 (s) = ∅, and π3 (s) = ∅ otherwise.

For example, if π1 maps states 1, 2, 3, and 4 to actions
a1, a2, a3, and ∅, respectively, and π2 maps these states
to ∅, a2, ∅, and ∅, then π1 − π2 will map these states
to a1, ∅, a3, and ∅.

To choose a partial policy from our generated set, we
give each partial policy a score, and choose that with
the highest score. We would like our options to “ex-
plain” or subtract out as much as possible. Therefore,
our score is equal to how much the partial policy sub-
tracts from the generated set. Namely, the score is
the size of the partial policy multiplied by the number
of elements in L that contain it. It is possible that
this “greedy” approach will not subtract out the max-
imal amount (i.e., choosing two options by a different
method may subtract out more than the top two op-
tions chosen by this method), but this scoring system
serves as a useful quick metric.

Given a set of options O together with the primitive
actions, we can compose these to reconstruct the solu-
tions in L. That is, when the number of states is finite,
one can describe a policy compactly by listing which

Table 1. Pseudocode for PolicyBlocks.

given a given set of tasks M
choose n as the desired number of options (or let n =∞)
use DP or RL to create a solution set L for M
let an option set O be empty
while (L is not empty) and (|O| < n)

// generate
let a candidate set C be empty
foreach element Π of the power set of L

let π = Mrg (Π) // Merge Π
add candidate π to C (if π /∈ C)
score π // size of π times frequency in L

find the candidate π∗ with highest score
add π∗ to O
// subtract π∗ from L
foreach element l of the power set of L

subtract π∗ from l
if l is empty remove it from L

return O as the set of found options

options are applicable, then by listing the remaining
state-action pairs individually. Partial policies that
subtract the most from the solution set allow for the
shortest lists needed to describe L (using the partial
policies). Thus, our metric serves as a heuristic for
minimum description length (analogous to, but differ-
ent from the heuristic of the SKILLS algorithm).

Given the procedures for generating, choosing, and
subtracting options, PolicyBlocks uses the new L (i.e.,
with the current set of found options subtracted) to
generate a new set of options. This procedure will
produce the next “best” option. The algorithm con-
tinues producing, selecting, and subtracting options
until a specified number of options is found or until
L is empty. Since at least one item of one element of
L will be subtracted at each iteration, this process is
guaranteed to halt.

There are several ways to use options to solve an-
other task drawn from R (Sutton et al. 1999). The
technique used in this paper is a variant of Macro
Q-Learning of McGovern (1997) and Intra-Option Q-
Learning of Sutton et al. (1999). First, we augment
our set of options with the set of primitive actions
so that these are always available. We have a Q-
value for each state-action pair s, a where a can be
a primitive action or an option whose input set I in-
cludes s. Our agent starts each task in a randomly
assigned state, and takes actions until it reaches a ter-
minal state, at which point the agent restarts. If the
task has no terminal states, the agent simply contin-
ues indefinitely. In either case, one may also bound
the number of actions taken before a restart. The
agent uses an “ε greedy” exploration strategy. This
means that at each state, with probability ε, the agent

chooses an action/option at random, and otherwise
the agent chooses the action/option with the highest
Q-value for that state. If the agent chooses a prim-
itive action a from state s and transfers to state s′

with reward r, the agent updates the Q-value thus:
Q (s, a) ← (1− α)Q (s, a) + α (r + γmaxa′ Q (s′, a′))
where a′ is assumed to be in the augmented action
set, and α is the step size parameter. If the agent takes
an option o, and after execution of the option gets a
cumulative discounted reward of r, and winds up in
state s, t time steps later, the update expression is
Q (s, o)← (1− α)Q (s, o) + α (r + γt maxa′ Q (s′, a′)).
While executing the option, the agent will visit states
s1, s2, · · · st (where st = s′). For every state si vis-
ited while executing the option, the value is updated
using the expression Q (si, o) ← (1− α)Q (si, o) +
α
(
ri + γt−i maxa′ Q (s′, a′)

)
, where ri is the cumula-

tive discounted reward received after time step i. Fur-
thermore, for each of these states, we update the Q-
value for the primitive action taken using the single
step reward and state transition for that action.

4. Experiments

To illustrate the behavior of PolicyBlocks, we ran it on
an 18 by 18 grid-world task. We then ran PolicyBlocks
on a larger hydroelectric reservoir task. For each task,
we created 20 sample problems by randomly setting
the reward structure (details below). We used policy
iteration (with deterministic tie breaking) on these 20
problems to obtain a set of 20 sample policies. The
discount factor, γ, was set always to .9.

Given a set of sample solutions, we found options ac-
cording to PolicyBlocks and SKILLS, as well as the
Reuse option. All option sets were augmented with the
primitive actions. We compared the performance of
Q-learning with these options sets with Q-learning us-
ing only primitive actions. For the grid-world, we also
constructed a set of options by hand that we thought
would be useful. These options had the goal of exit-
ing a room by the north, south, east, or west faces (if
such an exit existed). For the reservoir problem, it was
not obvious to us what might be useful “hand chosen”
options, so there is no comparison to these.

Using PolicyBlocks and SKILLS, we found the top 1,
2, 3, 4, and 5 options. Bernstein’s Reuse algorithm
allows for only one option, and has no parameters. In
addition to number of options, SKILLS has the pa-
rameter η, which weights the relative importance of
description length to performance loss. In general, a
larger value of η results in larger options. We set this
parameter to .5, 1, and 2. For all of our comparisons,
we set both the step size, α, and exploration rate, ε,

to .01, .05, or .1. Initially each Q-value was set to
1. We evaluated the performance of these option sets
by reporting the average accumulated reward over 100
new tasks for the grid-world and 10 new tasks for the
reservoir domain.

Bernstein’s Reuse option is a stochastic policy de-
fined over all states (i.e., I = S). Given a set of
solutions L to k Markov decision processes, this al-
gorithm generates a set of k stochastic policies SP
where SPi (aj |s) = 1 if Li (s) = aj and SPi (aj |s) = 0
otherwise. The probability of taking action a in state
s for the Reuse option is 1

k

∑k
i=1 SPi (a, s).

SKILLS is more complicated. This algorithm
seeks to minimize an energy function E =
PerformanceLoss+ηDescriptionLength by gradient
descent. Given a set of optimal Q-values to a set of k
problems, PerformanceLoss is the total decrease in
value (from optimal for the sample problems) caused
by constraining the action set to those defined by the
option set for each state. That is, if there is an option
defined for a state, not all primitive actions are neces-
sarily available for that state. DescriptionLength is
the sum of the size of the options plus k for each state
s for which no option is defined. To generate options,
one must specify the size of the option set and η. For
each option, SKILLS then modifies usages (i.e., how
useful an option is for a particular sample problem),
I, and π in order to minimize E.

4.1. The Grid-world Task

Our grid-world is an 18 by 18 grid (Figure 1) that
is naturally divided into rooms with doorways. The
grid-world has four stochastic actions: up, down, left,
right, which each have a .9 probability of success. If
an action does not succeed, the agent goes into one of
the remaining legal directions each with equal prob-
ability. A direction is illegal if an obstacle blocks its
path. Additionally, the agent has a deterministic “re-
main” action which allows the agent to stay in its cur-
rent location. Entering a goal state yields a reward
of 10, while all other transitions yield a reward of 0.
While performing Q-learning, an agent is reset to a
random location upon reaching the goal state. Grid-
world sample problems were made by choosing a goal
state randomly.

4.2. The Hydroelectric Reservoir Problem

A series of hydroelectric dams are positioned at dis-
tant points along a river. Each dam sells electricity
to a different city, and each has a reservoir to collect
water (Figure 3). Since there is no efficient electricity
storage, the city uses and pays for the electricity as

Figure 1. The grid-world with an example option.
Each black box is an obstacle, and each open box rep-
resents a state. The arrows indicate the actions for the
subpolicy. Lack of an arrow for a box implies that the
subpolicy is not defined for that state. Note that the op-
tion is discontiguous, and can be thought of as 8 separate
contiguous options. This subpolicy was found in 15 of the
20 sample solutions, and has size 109 giving it a score of
109·15 = 1, 635, making it the top option found. Other op-
tions found by PolicyBlocks followed this general pattern
of taking the agent through 1 or 2 rooms to the door.

soon as it is generated. The price of the electricity is
proportional to the city’s demand. In addition, due to
economic differences, different cities pay more or less
for the same amount of electricity and for the same
level of demand. Each dam has a reservoir, and an
agent must decide which dams to close or open, thus
producing electricity, letting the water flow down river,
and lowering the level of the reservoir. The agent’s
goal is to maximize its total discounted profit. How-
ever, there is no “goal state” as in the grid-world. The
first reservoir in the sequence gets a constant flow of
water. This task is an abstraction of that described by
Little (1955).

In our specific example, there are 4 dams, each with a
reservoir and a city. Each city i has a variable demand
level Di that can be either high, medium, or low, and a
fixed pay rate Pi ∈ (0, 1] that corresponds to the eco-
nomic differences. Each dam i has a reservoir water
level Wi of either high, medium, or empty. At each de-
cision point, the agent can open or close each of the 4

0 0.5 1 1.5 2 2.5 3

x 10
5

0

2000

4000

6000

8000

10000

12000

Time Steps

A
v
e

ra
g

e
 C

u
m

u
la

ti
v
e

 R
e

w
a

rd

PolicyBlocks
Hand Chosen Options
SKILLS
Primitives
Reuse Options

Figure 2. Option performance comparison for the
grid-world. The x-axis is time steps, and the y-axis is
the cumulative reward averaged over 100 MDPs.

dams, resulting in 24 = 16 actions. If the agent opens
a dam i, and it is not empty, a unit of electricity is pro-
duced, and the water level is decreased (from high to
medium, or from medium to empty). The water flows
down river, and the water level for the next reservoir
Wi+1 will be increased for the next decision point. The
agent receives a pay from the city equal to its pay rate
Pi if demand Di is medium, twice the city’s pay rate
if demand is high, and no pay at all if the demand
is low. If the agent keeps the dam closed, nothing
happens. Between decision points, the reservoirs fill
(from empty to medium, or from medium to high) if
the dam above them was opened (and water flowed).
The top dam always fills. If a dam is already at a high
level, and more water is coming from the dam above,
the water is uselessly disposed of by flood prevention
chutes, and the levels stay the same. The cities also
change their demand levels stochastically: each has a
.9 probability of remaining at the same level, and oth-
erwise it transitions to an adjacent level (e.g., low to
medium). The agent has a discount rate of .9 for each
decision point. Since there are 3 levels for each dam,
3 levels for each the city’s demand, and 4 cities and
dams, there are 38 = 6, 561 different states.

To apply PolicyBlocks, we consider instances of this
problem where the difference is the cities’ pay rates
Pi which are drawn according to a uniform distribu-
tion. Thus, the transition probabilities remain the
same across problems, but the reward function varies
yielding different optimal policies. For our experiment,
we generated 20 sample problems where each Pi was

Figure 3. A sequence of hydroelectric reservoirs and
dams. Each of the 4 dams provides power for a single city.
Each city’s demand (and pay rate) varies with time. The
agent must choose which dams to keep closed or open to
produce electricity to sell immediately to its city. Opening
a dam also sends some water to the next reservoir down-
stream. There is assumed to be a steady flow of water into
the first reservoir.

chosen randomly uniformly from (0, 1]. We ran Q-
learning on this problem for 10 new problems.

4.3. Results

Figure 2 shows results for the grid-world comparison.
Over all the parameter settings we tried, the best runs
are shown for PolicyBlocks, SKILLS, the Reuse op-
tion, hand chosen options, and primitive actions alone.
In all cases, option performance, in terms of cumula-
tive reward was maximized among the parameters we
tried when α = .1 and ε = .01. The optimal policy
was found when the slope of the line becomes con-
stant. The top 4 options generated by PolicyBlocks
outperformed even the “Hand Chosen Options”. This
was followed by SKILLS, using 2 options and setting
η = 1. Although the Reuse option initially outper-
formed the use of primitive actions alone, this option
failed to learn the optimal policy before 300,000 time
steps.

Figure 4 shows results for the reservoir comparison.
Again, we show the best runs for each algorithm. The
options generated by SKILLS, using 5 options, setting
α = .1, ε = .01, and η = .5, fared best. Just below
that is the Reuse option. PolicyBlocks (setting α = .1,

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time Steps

A
v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 R

e
w

a
rd

SKILLS
Reuse Options
PolicyBlocks
Primitives

Figure 4. Option performance comparison for the
reservoir problem. The x-axis is time steps, and the
y-axis is the cumulative reward averaged over 10 MDPs.
The options generated by SKILLS faired best. A hair’s
breadth below (nearly atop SKILLS) is the Reuse option.
PolicyBlocks performed better than using only primitives,
but not as well as the other option selection schemes.

ε = .05, and using the top 3 options) performed better
than using only primitives, but not as well as the other
option selection schemes.

Figure 5 shows results for the effects of the number of
options for PolicyBlocks on a grid-world. The perfor-
mance is similar with 2, 3, or 4 options. Below these
is the top single option, and at bottom is the perfor-
mance of the top 5 options. All of these outperformed
primitive actions except for the top 5 options, which
failed to learn the optimal policy after 300,000 time-
steps.

Since there are 220 possible mergings, we were pleased
to find that the vast majority of processor time was
spent on Q-learning. Creating the options never took
more than a few seconds once the sample solutions
were found. This is because it was rare that more
than 8 partial policies could be merged without having
a null result.

5. Discussion

For the grid-world, we believe the Reuse option suf-
fered from lacking a single purpose. For example, some
of the sample policies for each of the middle rooms
went left, and some went right. Therefore, the Reuse
option would spend a lot of time wandering arbitrarily
left and right in these rooms.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time Steps

A
v
e

ra
g

e
 C

u
m

u
la

ti
v
e

 R
e

w
a

rd

1 Option
2 Options
3 Options
4 Options
5 Options
Primitives

Figure 5. Effect of Parameters for PolicyBlocks. The
x-axis is time steps, and the y-axis is the cumulative reward
averaged over 100 grid-worlds. Using 2, 3, and 4 options
has similar performance. Below these is using only the top
option, and at bottom is the performance of using the top
5 options.

We believe that PolicyBlocks’s options did better than
the hand chosen options because they were larger in
general. For example, the two rooms in the lower right
corner are combined by a single option. The options
found by SKILLS were larger still, but perhaps too
large, and an agent is not provided with enough choice
points when following them. Setting η to be smaller,
and using more options creates the problem of intro-
ducing redundant options. Redundancy in SKILLS is
controlled by its usage values, and these can get stuck
in local optima during gradient descent.

There are two chief differences in the results for the
grid-world and those of the reservoir problem. The
first is that the Reuse option did quite well in the
reservoir problem, while doing worse than even using
no options in the grid-world. The second is that the
curves have a fairly constant slope for the reservoir
problem. At first, we thought that this constant slope
might be because 10,000,000 steps was not enough
time to learn an optimal policy, but plotting these
curves to 100,000,000 steps shows no further increase
in the slopes. We believe the two differences may both
be due to the relative similarity of the sample solu-
tions for the reservoir problem, compared to that of
the grid-world.

For the reservoir problem, the probability that the ac-
tion for a randomly selected state differs between two
of the sample policies is .087, whereas this figure is

.191 for the grid-world. This means that solutions for
the reservoir problem are much more similar to each
other than are those for the grid-world. This is even
more pertinent considering that there are only 5 ac-
tions for the grid-world, but 16 for the reservoir. Thus,
the weakness of the Reuse option for the grid-world be-
comes a strength in the reservoir problem, since simply
using an optimal policy from a sample problem yields
a near optimal return for a new problem. Likewise,
the amount of redundancy for SKILLS with 5 options
is significant and helpful for the reservoir.

The results for the number of options parameter show
that one can have too many or too few options. Having
too few options limits functionality. That is, in a cer-
tain situation (e.g., a room in the grid-world), there
may be several options that are useful for different
goals (e.g., going to the left or right door). However,
having too many options may introduce redundancy:
increasing the search space without increasing func-
tionality. In addition, adding too many options may
cause “over-fitting” of the sample solutions, resulting
in high bias. This latter effect may be the chief rea-
son for the poor performance of 5 options. This would
also explain why using 5 options slightly outperforms
both 1 option and using only primitives initially. In
both PolicyBlocks and SKILLS, over-fitting can be ad-
dressed by limiting the number of options by doing
something analogous to cross-validation.

SKILLS and PolicyBlocks both aim to minimize the
description length of the sample solutions via options.
Although, these algorithms use different measures of
description length, the core idea behind these is es-
sentially the same. A more important difference in
these algorithms is how they address option redun-
dancy. In SKILLS, this is implicitly addressed by
the PerformanceLoss and the usages, whereas Pol-
icyBlocks takes a more direct approach via the sub-
traction operation.

The experimental results suggest that PolicyBlocks is
most useful for sets of tasks in which sample solutions
can vary widely. This is useful for an agent in a en-
vironment complex enough to have a variety of tasks,
and where the agent will be long-lived in this environ-
ment.

PolicyBlocks can also be used for factored MDPs if the
merge, subtraction, and size operations can be imple-
mented using the particular factored representation.
However, this can be far from trivial.

PolicyBlocks has some limitations that are remedied
with minor changes. PolicyBlocks assumes that it has
time to compute optimal policies beforehand. How-

ever, a small modification of the algorithm would allow
solutions to be added to L as they are found. Policy-
Blocks also assumes that in cases where there are sev-
eral optimal policies, the agent is given a policy accord-
ing to a fixed tie-breaking scheme. Without this as-
sumption, the current implementation of PolicyBlocks
would fail to find similarities among sub-policies that
do essentially the same task. However, a slight modifi-
cation can make the weaker assumption that we have
a set of optimal actions for each state. This can eas-
ily be found given either a non-deterministic policy, or
the set of optimal Q-values for the sample problems
as in SKILLS. Given an action set, we can modify the
merge and subtraction operators to return the inter-
section and subtraction of the action sets, respectively.
The rest of the algorithm remains the same. Policy-
Blocks also assumes that the different problems do not
differ in dynamics. However, this assumption may be
relaxed if the dynamics of the different problems are
sufficiently close to each other.

6. Conclusion

We introduced a method by which useful options can
be discovered by looking for commonalities among so-
lutions to a set of related tasks. We illustrated this
approach by showing its performance on a grid-world
task and on a hydroelectric reservoir control task, and
comparing it with related option creation methods.
Our results are especially encouraging since Policy-
Blocks outperformed even hand-chosen options on the
grid-world task. Although these were toy problems,
we believe that the general methods can be extended
to larger tasks.

The main ideas of PolicyBlocks are the idea of finding
commonalities in solutions, and the idea of subtracting
these after they have been “explained”. We believe
that the utility of these ideas is very general, as they
apply to many forms of abstraction (e.g., boosting,
greedy set-covering algorithms).

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. ECS-
9980062. Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors, and do not necessarily reflect the views
of the National Science Foundation. The authors
would like to thank Amy McGovern, Ted Perkins,
Mike Rosenstein, Dan Bernstein, and Khash Rohan-
imanesh for their comments.

References

Amarel, S. (1968) On Representations of Problems of
Reasoning about Actions. Machine Intelligence 3,
vol. 3 131-171.

Anzai, Y., Simon, H. (1979) The Theory of Learning
by Doing. Psychological Review, 86, 124-140.

Bernstein, D. (1999) Reusing Old Policies to Acceler-
ate Learning on New MDPs. Technical Report UM-
CS-1999-026, Dept. of CS, U. of Mass., Amherst.

Bowling, M., Veloso, M., (1998) Reusing learned poli-
cies between similar problems. The AI*IA-98 Work-
shop on New Trends in Robotics Padua, Italy.

Dietterich, T. (2000) State abstraction in maxq hier-
archical reinforcement learning. NIPS 12.

Digney, B. (1998) Learning Hierarchical Control Struc-
ture for Multiple Tasks and Changing Environments.
From Animals to Animats 5: SAB.

Iba, G. (1989) A Heuristic Approach to the Discovery
of Macro-Operators. Machine Learning, 3 285-317.

Little, J. D. C. (1955) The Use of Storage Water in
Hydroelectric Systems. Opns Res. 3, 187-197.

McGovern, A. (2002) Autonomous Discovery of Tem-
poral Abstractions from Interaction with an Envi-
ronment, Ph.D. Thesis, U. of Mass., Amherst.

McGovern, A., Barto, A. G. (2001) Automatic Dis-
covery of Subgoals in Reinforcement Learning using
Diverse Density. ICML.

McGovern, A., Sutton, R. S., Fagg, A. H. (1997)
Roles of Macro-Actions in Accelerating Reinforce-
ment Learning. Grace Hopper Celebration of
Women in Computing, pages 13-18.

Precup, D. (2000) Temporal Abstraction in Reinforce-
ment Learning. Doctoral Dissertation, U. of Mass.,
Amherst.

Sutton, R. S., Barto, A. G. (1998) Reinforcement
Learning. an introduction. Cambridge, MA: MIT
Press.

Sutton, R. S., Precup, D., Singh, S. (1999) Between
MDPs and semi-MDPs: A Framework for Temporal
Abstraction in Reinforcement Learning. Artificial
Intelligence 112:181-211.

Thrun, S., Schwartz A. (1995) Finding Structure in
Reinforcement Learning. Advances in Neural Infor-
mation Processing Systems 7.

Watkins, C. (1989) Learning from Delayed Rewards.
PhD Thesis, U. of Cambridge, England.

