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Abstract

We present a set of phenomena that can be used for evaluat-
ing cognitive architectures that aim at being designs for in-
telligent systems. To date, we know of few architectures that
address more than a handful of these phenomena, and none
that are able to explain all of them. Thus, these phenom-
ena test the generality of a system and can be used to point
out weaknesses in an architecture’s design. The phenomena
encourage autonomous learning, development of representa-
tions, and domain independence, which we argue are critical
for a solution to the AI problem.

Introduction

Cognitive architectures can have different goals for differ-
ent research communities. Psychologists and neuroscientists
would like a cognitive architecture to help explain mental
phenomena in people. This is the stated goal of ACT-R (An-
derson 1993), and is also a driving force of the desiderata
given by (Sun 2004). Pragmatists might prefer an architec-
ture that would be useful as a tool, such as a medical advisor.
However, researchers who are interested in the emergence of
intelligent machines should be most excited about cognitive
architectures that describe a fully intelligent system. These 3
goals often overlap, but there are differences. For example, a
tool for doctors might contain an extensive, hand-designed,
medical ontology, but without the ability to learn, such a sys-
tem would hardly be considered a design for a fully intelli-
gent agent. Another example where the goals diverge would
be a system that (in addition to forming concepts) memo-
rizes its raw input, which is possible with today’s afford-
able massive storage devices. Such a “superhuman” mem-
ory would be undesirable for a psychologist, since people
clearly forget things, but this quality isn’t necessarily a prob-
lem for an AI researcher, who might even prefer this model.
We’re interested in a solution to the AI problem, and there-
fore our goals for a cognitive architecture don’t necessarily
include the making of immediately useful tools or the expla-
nation of human cognitive phenomena (though such proper-
ties may result from pursuing our primary goal).

In this paper, we suggest a “gauntlet” of criteria for
what an agent should be able to do. The gauntlet is non-
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exhaustive, but we know of no system that meets all the cri-
teria, and such a system would be an advancement for AI.
The gauntlet can be used to evaluate a cognitive architec-
ture: the more fully a cognitive architecture addresses the
items in the gauntlet, the better.

Background: Core Goals of Intelligence

Autonomous development of representations should be a
primary goal of a cognitive architecture. Traditional ap-
proaches to AI focus on selecting an application and then
constructing representations for that domain. These ap-
proaches are problematic in that they require much labor in-
tensive knowledge engineering. Furthermore, these systems
tend to be brittle, often failing when they encounter unantic-
ipated situations. An alternate approach is to have the com-
puter develop its representations autonomously. In this al-
ternate approach, the robot is viewed as a “robot baby” (Co-
hen et al. 2002). The robot is provided a minimal amount of
knowledge (implicit or otherwise) about the world and is ex-
pected to learn and develop a conceptual structure from large
amounts of raw sensor data over a long period of time. This
approach is attractive because it requires little knowledge
engineering and is robust because the agent learns to adapt
to unanticipated situations. This approach also directly ad-
dresses the Symbol Grounding Problem (Harnad 1990) –the
problem of creating meaning using only a set of meaningless
symbols– by directly grounding all an agent’s knowledge in
sensory data.

Since we provide a minimal amount of domain knowl-
edge, domain independence and generality should be among
the top criteria in evaluating an agent architecture. There-
fore, an empirical demonstration of an agent architecture
should contain several disparate (though data-rich) domains
with a minimal amount of human-provided data “massag-
ing”. A set of domains might contain robot sonar sensor
data, a large corpus of text, a series of images, and a sim-
ulation of Conway’s Game of Life. For each of these, an
architecture should, at a minimum, autonomously develop
an ontology that’s useful for characterizing that domain. For
example, when given sonar data, the agent may build a hi-
erarchy of motifs. When given images, the agent should de-
velop edge filters, and when given Conway’s Game of Life,
the agent should develop the concept of a “glider”.

To answer the question more precisely of exactly what



an intelligent agent should do with its data is perhaps tan-
tamount to answering the question of what intelligence is.
It has been suggested that a core purpose of intelligence is
to concisely characterize a set of data (Wolff 2003), (Hut-
ter 2004). That is, given data, an intelligent agent should
generate a model that best compresses the data. This is
the principle of Minimum Description Length (MDL). It is
fundamentally equivalent to Ockham’s Razor, which says,
in effect, that “The shortest model (that predicts the data)
is the best model.”. If we assume that the prior probabil-
ity of a model is inversely proportional to the exponent of
its description length, then Ockham’s Razor is also funda-
mentally equivalent to the Bayesian principle that states that
“The most probable model is the best model.”.

We somewhat agree with these claims. An intelligent
agent should be able to build a model that concisely charac-
terizes its sensor data, and it should be able to use this model
to answer queries about the data. Such queries might con-
sist of making accurate predictions about given situations.
The agent should also be able to generate plans to accom-
plish goals (or obtain reward). However, the time needed
(in terms of steps of computation) to answer these queries
should also be taken into account. Thus, it is sometimes
useful to occasionally trade memory for time. For example,
an intelligent being might cache a result that it has deduced
if it expects to use the result again.

To make this concrete, suppose our agent’s domain is Eu-
clidean Geometry. In this domain, a huge but finite set of
theorems of can be “compressed” down to a model contain-
ing just 5 postulates and some rules for inference. Such a
model would neither be very useful nor would it work the
same way as a person. A professional (human) geometer
would likely “cache” useful lemmas thereby speeding up his
or her future deductions. It seems true that the same should
apply to a generally intelligent being. Another example in-
volves sensor data. If we equip our agent with a video cam-
era, it’s possible that the most concise representation of the
data (if the pictures are fairly continuous) will be an encod-
ing typical of many video compression algorithms. That is,
the representation might fully describe the initial frame, then
describe each subsequent frame as changes from its previ-
ous frame. A problem with this approach is that it would
take longer to answer queries about the end of the day than
the beginning (because the entire day would have to be “un-
wrapped”). This also seems contrary to our intuitions about
what an intelligent agent should be able to do.

Thus, we propose an alternative to Ockham’s Razor called
Marctar’s Axe, which states “The quickest model (that pre-
dicts the data) is the best model.”. By quickest, we mean
the model that takes the fewest steps of computation to get
accurate answers to queries. Of course, there’s a tradeoff
between speed and accuracy, but this can be folded into a
single number by setting a parameter that would act as an
“exchange rate” between steps of computation and bits of
accuracy. Marctar’s Axe somewhat overlaps with Ockham’s
Razor in that fast models tend to be small and tidy so that
computation isn’t spent searching through disorganized sets
of information. Marctar’s Axe also addresses the utility of
caching: caching the answers to frequent queries (or fre-

quent “way points” in derivations) can yield a faster model.

In the next section we present the gauntlet, which is a set
of phenomena that a cognitive architecture should be able to
explain or produce. We view the end goal of AI in terms of
Marctar’s Axe. That is, to obtain quick and accurate answers
or predictions about a set of data. The items in the gauntlet
can be viewed as subgoals of Marctar’s Axe.

The Gauntlet: Desirable Cognitive Phenomena

We consider the following list of cognitive phenomena to be
necessary (but not necessarily sufficient) features of general
intelligence. A cognitive architecture that explains general
intelligence should have a story for how it addresses them.
This list is incomplete, but many cognitive phenomena not
on the list are corollaries of those on the list. For example,
a full solution to the problem of representing, creating, and
using invariant representations could readily be used to solve
the Frame Problem (McCarthy & Hayes 1969), which is the
problem of stating what remains unchanged when an event
occurs.

The items in the list aren’t necessarily independent. That
is, some of the items might be corollaries of other items in
the list. Therefore, these phenomena can either be directly
addressed, or some may be solved as emergent properties of
an architecture.

Concept Formation As we mentioned in the Background
section, an agent should be able to develop its own represen-
tations of the world. These representations should, at some
level, form a concept ontology, which should be arranged in
a semantic heterarchy. For example, the concept that cor-
responds to a pterodactyl should belong to both the class of
flying things, and the class of reptiles. The concept forma-
tion mechanism should be able to make concepts out of vir-
tually anything, not only physical objects. There should be
concepts that characterize relations, events, stories, actions,
and even cognitive actions.

Invariant Representations and Analogy When a person
dons a pair of green-tinted sunglasses for the first time, they
have little trouble adapting to their altered visual input, but
this isn’t such a trivial task for a (visual) robot. In terms
of raw sensor data, a green-tinted scene has very different
values from the same scene in its natural color. We suspect
that this is because people have abstract representations that
are invariant of the instances that caused them. Representa-
tions developed from visual data should also be invariant to
translation, rotation, and scaling. These invariant represen-
tations aren’t limited to visual data. A stenographer can hear
different speakers say the same phrase in different pitches,
volumes, and speeds, yet produce the same transcription.

A particularly tricky problem is to discover a representa-
tion of a traffic wave. That is, given a bird’s eye view of a
simulation of automobile traffic on a highway, a person can
readily point out where the traffic jams are. A traffic jam
is different from a collection of cars. Individual cars move
in and out of a traffic jam, and the jam itself usually moves



opposite the direction of traffic. A person could also cre-
ate features to describe the traffic waves: e.g., its spread and
how fast it’s moving.

An important class of invariant representations consists
of those formed through analogy. Some suggest that anal-
ogy may even be the “core of cognition” (Hofstadter 2001).
Analogy allows us to focus on the relations among entities
rather than superficial aspects of the entities. For example,
we might notice that a red ant killing a black ant and stealing
a piece of food it is analogous to a situation in Hamlet where
Claudius murders Hamlet’s father and usurps the throne of
Denmark. In this situation binding is important. That is,
we must be able to specify that the red ant corresponds to
Claudius, the black ant to Hamlet’s father, and the piece of
food maps to the throne. Analogy is also useful for knowl-
edge transfer: if an analogy is found, then conclusions about
one domain can map to another domain.

Plato’s Cave: Theory Building In his Allegory of the
Cave (Plato 360 BC), Plato describes a group of people
whose observations of the world are solely shadows that
they see on the wall of a cave. The question may arise
as to whether these observations are enough to propose a
theory of 3-dimensional objects. In principle, this prob-
lem can be solved. If an agent is given a representational
framework that’s expressive enough to encode a theory of
3-dimensional objects, then the agent could go through the
combinatorially huge number of theories expressed in this
language (under a certain length) and choose the one that
best explained the data (where “best” can be defined in terms
of Ockham’s Razor or Marctar’s Axe). The best theory will
likely include a description of 3-dimensional objects (as-
summing such a theory is of unrivaled utility for character-
izing the data). Thus, our task is possible, given an exponen-
tial amount of time. There are other real examples of build-
ing theories of phenomena that aren’t directly observable:
neither atoms, genes, radio waves, black holes, nor multi-
million year evolutionary processes are directly observable,
yet scientists have built theories of these.

A robot given sonar sensor data (or uninformed visual
data) is faced with fundamentally the same problem. Vi-
sual observations of a 3-dimensional object, such as a pen,
can be very different (in terms of raw sensor data) depending
on whether the pen is viewed lengthwise or head on. There-
fore, the ability to propose “scientific theories” of this type
is something a cognitive architecture should be able to ex-
plain. The architecture’s representation framework needs to
be expressive enough to encode such theories, and the archi-
tecture’s model-builder should be able to discover theories
in polynomial time.

A similar approach can be used to create causal theories
from observational data (Pearl 2000). Statisticians point out
that it’s impossible to prove causality from observational
data. This is true, but we can use our “theory language”
to propose causal theories that are more likely than others.

Reasoning, Parsing, and Planning Clearly, the ability to
reason is an essential component of intelligence. Reason-

ing requires rules of inference, and the ability to learn these
rules should be another requirement of intelligence. That is,
an agent shouldn’t rely on being told rules such as “If it is
raining, and a robot goes outside, then that robot will get
wet.”.

An agent should be capable of hypothetical reasoning: an
agent should be able to represent counterfactual situations,
and deduce consequences of these situations. An agent
might also pay special attention to cases where many differ-
ent hypotheses yield the same conclusion (and thereby de-
velop a general rule). For example, a robot might “imagine”
several scenarios in which it falls from great heights, each
simulation resulting in the conclusion that the robot would
be damaged. The robot should then generalize that falling
from heights causes damage. An essential component of hy-
pothetical reasoning is being able to represent that an event
is merely make-believe. Some otherwise promising systems,
such as that described by (Hawkins & Blakeslee 2004) seem
to lack this ability. Furthermore, reasoning should be able to
continue for more than a few steps, even under uncertainty
(in which case an architecture should be able to investigate
different scenario branches).

An agent should be able to explain its world in terms of its
learned conceptual structure. This should be done by pars-
ing, or classifying data according to its current concepts, and
by using rules of inference that it has developed. An archi-
tecture should be able to escape local optima in its character-
ization of the world. For example, an agent should be able to
reclassify data, or replace one explanation by a shorter one.
An agent should also be able to remove obsolete or unused
concepts from its ontology.

An agent should also be able to use reasoning (and espe-
cially hypothetical reasoning) to develop plans for accom-
plishing goals. We suspect that reasoning, parsing, pre-
diction, classification and explanation in terms of devel-
oped concepts, and planning can be implemented as differ-
ent facets of a common algorithm. For example, planning
might simply be the process of “explaining” how a desired
situation can come about.

Finally, an agent should be able to combine its abilities to
reason, learn rules of inference, and form heterarchical con-
ceptual structures to implement hierarchical reasoning. That
is, an agent should be able to create a conceptual structure of
rules, and use these rules to quickly reach conclusions. For
example, an agent faced with the task of breaking a piece
of wood might follow this path: (going up the heterarchy)
“Wood is-a rigid object. Breaking is-a change. To change
a rigid object requires force applied to it.” (and back down)
“There are several ways to apply force. Some involve strik-
ing with another rigid object. A rock is another rigid ob-
ject...”.

Metacognition It would be useful for an agent to be able
to observe and modify aspects of its own cognitive behav-
ior. Such metacognition might allow the agent to cache
“lemmas” (and other conclusions) or develop heuristics to
speed searches. Metacognition, because it deals with infor-
mation about information, is useful for deciding which ac-



tions and cognitive actions an agent can take to improve its
model. Therefore, metacognition can be used to pose ques-
tions and design experiments (action plans) to gain informa-
tion. Metacognition can also be used to search for incon-
sistencies in the model, and modify the conceptual structure
when contradictions are found.

It’s possible for metacognition to be elegant: If the repre-
sentation schema for an architecture is general enough, then
it should be able to encode cognitive actions. If the model-
building mechanism of the architecture is powerful enough
to blindly work on any system described in its representation
framework, then it’s conceivable that an agent can character-
ize its own cognitive actions just as it would characterize any
other stream of data (assuming we separate cognitive actions
from metacognitive actions, thus avoiding a feedback loop).

Specifying Reward An agent should be able to plan and
take actions to attain a (possibly externally specified) goal,
and an architecture will have to address how goals are spec-
ified. This is non-trivial for a robot baby because it’s born
with a minimal model of the world and therefore, no “lan-
guage” to express what should cause a reward. Furthermore,
we shouldn’t rely on any particular sensor modality to spec-
ify the reward. That is, the specification of the reward should
be invariant to the raw sensor data.

Human brains seem to have solved this problem. For ex-
ample, the majority of male humans seem to be innately
attracted to women, and vice versa. From a computa-
tional standpoint, telling the difference between a man and a
women is far from trivial. The attraction seems to be invari-
ant to any single modality: most people either blind or deaf
from birth still follow this pattern.

An approach to solving the problem is given in the fol-
lowing example: Suppose we wanted a robot’s innate goal
to be to harvest tomatoes. Furthermore, we wanted the robot
to harvest only proper tomatoes (ripe, but not over-ripe, not
too small, or insect infested, etc.), and we don’t know what
its sensor suite will be. (In practice, we might “teach” the
robot as we would with a human, but this example is for
illustrative purposes.)

To do this, we could build several robots with widely
ranging modalities, and have them (over several months) ex-
perience the environment of the tomato fields. From this
experience, the robots should have built a world model that
would include a “tomato taxonomy”. Then, we can find an
invariant representation of a “good tomato” by noting what
parts of their ontologies are “active” when they have experi-
ences with good and bad tomatoes (analogous to what some
neuroscientists do to localize various cognitive functions in
humans in fMRI studies). Specifically, we could find an in-
variant representation for the act of harvesting good toma-
toes. We can then put this in an agent’s “innate” model,
and specify that it’s a goal. Then, when developing repre-
sentations, the agent should discover a representation that is
similar (or perhaps isomorphic to) the representation of this
goal.

Statistical and Symbolic Components (Sun 2004) argues
that a cognitive architecture that explains people should con-
tain “an essential dichotomy” that can be roughly para-
phrased as a split between traditionally statistical and sym-
bolic methods. Sun’s arguments are from a psychological
perspective and might not apply to general intelligence. That
is, we leave open the possibility that there might be a unified
system that captures both the symbolic and statistical ele-
ments of cognition. Whether an architecture explicitly has
this dichotomy or not, it seems clear that an intelligent agent
should have the strengths of both components.

The world is too complex to be modeled completely, and
therefore a system must be able to characterize and handle
uncertainty. Furthermore, an agent should be able to pick
up on subtle statistical patterns such as correlations among
events. Statistical methods are useful for this, but standard
methods, such as support vector machines or connection-
ist models, aren’t without their downsides. For example,
any connectionist system must address the Binding Problem
(von der Malsburg 1999), the problem of specifying which
concepts are bound to which parameters, which is important
for making use of analogies. Solving The Binding Problem
is trivial in symbolic representations. A statement as simple
as “bind <symbol1> <symbol2>” might suffice.

Along similar lines, an intelligent system should also be
able to create new grammatical constructions. For example,
given the concept of “red” and the concept of “ant”, an agent
should be able to represent a “red ant”. There should be no
hard limit to the depth of allowable constructions. An agent
should also be able to represent a (new) concept as complex
as “raining rocking horses on Pluto’s 3rd moon”.

Nonessential Human Cognitive Phenomena
Our goal is not to model humans. As the only exemplar of
intelligence, research on how human brains work often lends
insight as to how an intelligent system can be built (Hawkins
& Blakeslee 2004), but we believe that there exists a more
direct way to create intelligence than exactly modeling hu-
man brains, and therefore we shouldn’t be constrained to
designs that were myopically stumbled upon by evolution.
An analogy might be made to a human eye’s lens. Its shape
is an approximation of an ideal lens that can be described
by an elegant parabolic equation. If a design for intelligence
happens to account for certain human cognitive phenomena,
we’ll be glad, but this goal is secondary.

In fact, some human cognitive phenomena (such as psy-
chotic behaviour or getting tired) are undesirable. There are
some cognitive phenomena that occur in humans that we’ve
intentionally omitted from the gauntlet. For example, we’ve
omitted any mention of consciousness. Whether it’s possi-
ble to have intelligence without consciousness (in the sense
of sentience) is open to debate. Regardless, our chief aim is
intelligence, and if it’s impossible to have intelligence with-
out sentience, then sentience should be a byproduct of our
architecture, not a direct goal. Another example is the split
between short-term and long-term memory. It’s not clear to
us that this split is necessary for intelligence. A cognitive
architecture should have both concept definitions and state-
ments, but an elegant model might fold these together (so



that it can use the same mechanisms to work with both). It’s
possible that the long-term/short-term split is only a product
of physical mechanisms in brains (Lynch 2004).

Outlook

We feel that it’s premature to have a numeric benchmark
for a cognitive architecture, since no major architecture is
able to accomplish all the gauntlet’s tasks at any speed. At
this stage, a simple architecture that’s unoptimized, yet able
to address most of the gauntlet is preferable to a complex
architecture that’s optimized but able to address just a few
items. This is for the same reason that, were we studying
aviation in the late 19th century, a Kitty Hawk style flyer
would have been preferable to a system containing only the
landing gear and navigation system of an F-15. That is, an
architecture should be a full design for intelligence. Case
studies in various aspects of intelligence may be useful, but
an architecture should focus more on the overall design and
interactions of these components.

Therefore, elegance of an architecture is important. An
architecture should strive to be simultaneously both simple
and general. One strategy to accomplish this is to put the
bulk of complexity in the process of the architecture as op-
posed to the architecture’s design. That is, a simple archi-
tecture that takes more computational resources to learn and
reason should be preferable to a complex architecture that’s
a constant factor more efficient. For example, an architec-
ture describable in 500 lines should be preferable to an ar-
chitecture that takes 20,000 lines to describe but runs 10%
faster. Optimization should come after generality.
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