Spontaneous Analogy by Piggybacking on a Perceptual System

Marc Pickett

David W. Aha

Naval Research Laboratory Washington, DC, USA

How are analogs retrieved spontaneously?

- "Classic" analog retrieval • Is given *delineated* target
- Searches through *all* stored cases
- Mapping *after* retrieval

Spontaneous analog retrieval

- Is given *unsegmented* target
- Searches through *fraction* of cases
- Mapping *concurrent with* retrieval

Can <u>analog</u> retrieval be more like <u>perceptual</u> retrieval? (Hint: Use "perceptual" methods.)

Pterodactyls

A System for Learning from Perceptual Data

Given set of <u>uninterpreted</u> feature-bags, system:

• **learns** feature hierarchy (using chunking)

Learning Analogical Schema Hierarchies

How to quickly retrieve analogs:

- Learn hierarchy using "perceptual" system on set of transformed structures
- Given new structure:
 - transform structure into feature-bags
 - **parse** structure using hierarchy

Analog Retrieval Comparison:

- Hierarchy acts as "index" for *fast* $O(\log n)$ retrieval (compared to O(n) for earlier methods)
- Extracts relevant shared sub-structures during retrieval
- Slight accuracy cost, but significant speedup

Avg. # Comparisons Accuracy 10000% + 00% 10000 + 00ΜΔC / FΔC

- **parses** new instances using learned features (characterizes instance in terms of higher features)
- **predicts** missing elements using top-down inference

Not just for perceptual data

system learns from The any dataset described using feature-bags, (e.g., animals described as sets of attributes). Individual animals are at left. Base features are at right. Black nodes correspond to higher-level features. Note the "fish" concept at upper-left.

Learned "Zoo" Hierarchy

MAC/IAC		
Ours	$95.45\% \pm .62\%$	$15.43\pm.20$

A Hierarchy of Plot Devices

Using the "perceptual" learning algorithm, on (transformed) story data, we get hierarchy of analogical schemas (detail at left). Higher-level features correspond to plot devices. E.g., Double Suicide schema: "A thinks B is dead, so kills self. B (alive) finds A dead so kills self." where A =Romeo/Cassius and B = Juliet/Titinius.

Current and Future Work

Analogical Inference Using "Perceptual" Methods: • **parse** "Doug" story (to inherit from top-right node)

But... system requires input to be feature-bags (not relational structures).

Transforming Relational Structures into Feature-bags

How to transform relational structures into feature-bags such that surface overlap in bags corresponds to *analogical overlap* in original structures

1. Given relational structure (in predicate logic)...

fox OFox	cause s1 s2	sameAs s3 (sour OGrapes)
false s3	grapes OGrapes	sameAs s5 (decide OFox s3)
cause s4 s5	incapable OMen	sameAs s4 (get OFox OGrapes)
false s4	decide OFox s3	<pre>sameAs s1 (incapable OMen)</pre>
men OMen	sameAs s2 (fail OMen)	blameFor OMen concCircum s2
fail OMen	want OFox OGrapes	circumstances concCircum

2. Grab many overlapping connected "windows" (like overlapping receptive fields in vision)

Given many transformed structures, learn hierarchy

(both of windows and of windows-of-windows)

- **predict** (top-down) loaned-lost feature
- chain loaned-lost with loaned-Spatula to get lost-Spatula (i.e., the Spatula was lost)

• prediction: for stories merg-

3. Transform each window into feature bag by *chaining* roles and fillers:

grapes

blameFor OMen concCircum s2 sameAs s2 (fail OMen) fail OMen circumstances concCircum men OMen incapable OMen

sour

blameFor1=blameFor3.fail1 circumstances1=blameFor2 fail1=blameFor3.fail1 fail1=blameFor1 incapable1=blameFor3.fail1 incapable1=blameFor1 incapable1=fail1 men1=blameFor3.fail1 men1=blameFor1 men1=fail1 men1=incapable1

Entity

relation

4. Represent each structure as *bag* of feature-bags

<pre>blameFor1=blameFor3.fail1 circumstances1=blameFor2 fail1=blameFor3.fail1 fail1=blameFor1 incapable1=blameFor3.fail1 incapable1=blameFor1 incapable1=fail1 men1=blameFor3.fail1 men1=blameFor1 men1=fail1 men1=incapable1</pre>	<pre>cause2.fail1=blameFor3.fail1 blameFor1=blameFor3.fail1 blameFor1=cause2.fail1 cause2=blameFor3 fail1=blameFor3.fail1 fail1=cause2.fail1 fail1=blameFor1 men1=blameFor3.fail1 men1=cause2.fail1 men1=blameFor1 men1=fail1</pre>	<pre>blameFor1=blameFor3.fail1 fail1=blameFor3.fail1 fail1=blameFor1 incapable1=blameFor3.fail incapable1=fail1 men1=blameFor3.fail1 men1=blameFor1 men1=fail1 men1=incapable1</pre>		
(Etc)				

Hierarchy Learned from Story Data (partial view)

Now we can apply "perceptual" methods to relational structures!

ing will recognize similarities between "likes" and "loves"

How to get relational structures from sensor data?

- How to infer relations from notexplicitly-relational data?
- E.g., given many (pixel-level) still images like those on left, how might system develop concept for hit(ball1, ball2)?

References

- [1] M. Pickett, D.W. Aha Spontaneous Analogy by Piggybacking on a Perceptual System In Proc. of 35th Conf. of Cog. Sci. Soc., 2013.
- [2] M. Pickett, D.W. Aha Using Cortically-Inspired Algorithms for Analogical Learning and Reasoning In Bio. Inspired Cog. Archs., 2013.