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How are analogs retrieved spontaneously? Learning Analogical Schema Hierarchies

Source
“Classic” analog retrieval Spontaneous analog retrieval How to quickly retrieve analogs:
e Is given delineated target e Is given unsegmented target e |earn hierarchy using “perceptual” system on
e Searches through all stored cases e Searches through fraction of cases set of transformed structures
e Mapping after retrieval e Mapping concurrent with retrieval e Given new structure:

— transform structure into feature-bags

— parse structure using hierarchy

“

Canyon Analog Retrieval Comparison:
e Hierarchy acts as “index” for fast O (logn) retrieval
(compared to O (n) for earlier methods)
A System for Learning from Perceptual Data e Extracts relevant shared sub-structures during retrieval

e Slight accuracy cost, but significant speedup

Can analog retrieval be more like perceptual retrieval? %
(Hint: Use “perceptual” methods.) Vis

- Given set of uninterpreted feature-bags, system: _
X Accuracy Avg. # Comparisons

< e learns feature hierarchy (using chunking) MAC/FAC  100.00% =4 .00% 100.00 + .00
o Ours 05.45% =+ .62% 15.43 4+ .20
......... z e parses new instances using learned features

......... z (characterizes instance in terms of higher features)

......... z _ o | _ A Hierarchy of Plot Devices
=l e predicts missing elements using top-down inference

Z’E

X = Using the “perceptual”

T learning  algorithm, on

o Not just for perceptual data : (transformed) story data,

we get hierarchy of analogi-

| . cal schemas (detail at left).
-

- any dataset described us- Higher-level features corre-
Concept

g ing feature-bags, (e.g., ani- = = ,;;;cide” spond to plot devices. E.g.,
1> mals described as sets of at- ™ R, Double Suicide schema: “A
- tributes). Individual animals == e | thinks B is dead, so Kkills
> are at left. Base features are o= self. B (alive) finds A dead

i m a ge m |d— | evel T . toothed Much Ado About Nothing .
- at right. Black nodes cor- L= so kills self.” where A
Story Hierarchy (detail)  Romeo/Cassius and B

patches features R
tures. Note the “fish” con- &=~ Juliet/Titinius.

I S Othello

West Side Story

> The system learns from [

haslegs

Julius Caesar

Antony and Cleopatra

venomous

to raw pixels — respond to higher-level fea-

aquatic

cept at upper-left.

Hierarchy Learned from Visual Data (partial view)

Learned “Zoo” Hierarchy

Current and Future Work

But... system requires input to be feature-bags (not relational structures).
Analogical Inference Using “Perceptual” Methods:
e parse “Doug” story (to inherit from top-right node)

e predict (top-down) loaned-lost feature

Transforming Relational Structures into Feature-bags e chain loaned-lost with loaned-Spatula

. . . to get lost-Spatula (i.e., the Spatula was lost
How to transform relational structures into feature-bags such that surface overlap in bags 5 P ( P )

corresponds to analogical overlap in original structures pordered-presided attackee-taker creditor-loaner
borderer-visitee attacker-owner debtor-loanee
presider-visitor owned-taken debtor-loser
loanee-loser
. . loaned-lost )
: - - - - Given many transformed structures, learn hierarchy <
1. Given relational structure (in predicate logic)... ' W N
\
fox OFox cause sl s2 sameAs s3 (sour 0Grapes) — — — \ >
akistan nnis ou
false s3 grapes 0Grapes sameAs s5 (decide OFox s3) \ )

: owner-India borderer-Canada owner-Innis \ eater-Doug
cause s4 sb 1ncapab1e OMen sameAs s4 (get OFox OGrapes) owned-Kashmir bordered-USA owned-Kabob \ eaten-Apple
false s4 decide OFox s3 sameAs s1 (incapable 0OMen) taker-Pakistan presider-Obama taker-Peter \ loaner-Doug

. . taken-Kashmir presided-USA taken-Kabob loanee-Gary
men 0OMen sameAs s2 (fail OMen) blameFor OMen concCircum s2 attacker-India visitor-Obama attacker-Innis “ loaned-Spatula
fail OMen want OFox OGrapes circumstances concCircum attackee-Pakistan visitee-Canada attackee-Peter loser-Gary

borderer-Afghanistan loaner-China loaner-Innis \ creditor-Doug
bordered-Pakistan loanee-USA loanee-Fred \ debtor-Gary
presider-Zardari loaned-Factories loaned-Bike \) ——————————
presided-Pakistan loser-USA loser-Fred | loaned-lost |
visitor-Zardari lost-Factories lost-Bike
visitee-Afghanistan creditor-China creditor-Innis
(e . debtor-USA debtor-Fred
. . attackee-bordered
2- Grab ma ny Overlapplng COn neCted WlndOWS attackee-presided bordered-debtor attacker-creditor
bordered-taker bordered-loanee attacker-loaner
|k | - " f |d " = presided-taker bordered-lo_ser creditor-owner
(like overlapping receptive fields in vision debtor-presided loaner-owner
loanee-presided
loser-presided
a
Toy Example for Analogical Inference

Merging to get Disjuncts/Pooling-Nodes:
e pooling-nodes to represent

invariant features

. . /oo
(For images: translation, /&y ().

] AND /NN T
rotation, scale, etc.) AN // \ O\

ing will recognize similarities i\ A/,
" 1 i I Y
between “likes” and “loves ,
¥

3. Transform each window into feature bag
by chaining roles and fillers:

blameForl=blameFor3.faill

circumstancesl=blameFor2

faill=blameFor3.faill

faill=blameForl

£2i1 OMen ?ncapab1e1=blameFor3.fa111
, , incapablel=blameForl

circumstances concCircum ) i

nen OMen incapablel=faill

menl=blameFor3.faill

menl=blameForil

menl=faill
menl=incapablel

blameFor OMen concCircum s2
samelAs s2 (fail OMen) CZ“!

incapable 0OMen

e How to infer relations from not-

4. Represent each structure as bag of feature-bags

explicitly-relational data?
blameForlil=blameFor3.faill cause2.faill=blameFor3.faill .
, 1=blameFor? blameFori=blameFor3.faill blameForl=blameFor3.faill " - "
circumstancesl=blamekor SUGSESORSd SOk (U SORASIq bt faill=blameFor3.faill ® E . IVen man 3IX€|—|€V€| Stl”
. . . ’
faill=blameFor3.faill blameForl=cause2.faill .
faill=blameForil cause2=blameFor3 SRSl SR et 0 |.l( I] | 'f }]
, : , , incapablel=blameFor3.faill |mage5 IKE t ose on € t1 ow
incapablel=blameFor3.faill faill=blameFor3.faill , 5
i blel=blameForl faill=cause2.faill i " }] (j | 'f
iy _ , - incapablel=faill mignht system develop concept tor
incapablel=faill faill=blameForil neni=blameFor3.faill
menl=blameFor3.faill men1=b1a1neFor3:fa111 neni=blameForl hlt (ball 1 , ballz) 7
menl=blameForil menl=cause2?2.faill .
. menl=faill
menl=faill menl=blameForil neni=incapablel
menl=incapablel menl=faill P .
. n Iy . 1
- stories mid-level features chained
(Etc...) _
(plot devices) features
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Now we can apply “perceptual” methods to relational structures!



