
Using Cortically-Inspired Algorithms

for Analogical Learning and Reasoning

Marc Picketta, David W. Ahab

aNRC/NRL Postdoctoral Fellow, Washington, DC 20375
bNavy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory

(Code 5510), Washington, DC 20375

Abstract

We consider the neurologically-inspired hypothesis that higher level cognition
is built on the same fundamental building blocks as low-level perception. That
is, the same basic algorithm that is able to represent and perform inference
on low-level sensor data can also be used to process relational structures. We
present a system that represents relational structures as feature bags. Using
this representation, our system leverages algorithms inspired by the sensory
cortex to automatically create an ontology of relational structures and to effi-
ciently retrieve analogs for new relational structures from long-term memory.
We provide a demonstration of our approach that takes as input a set of unseg-
mented stories, constructs an ontology of analogical schemas (corresponding to
plot devices), and uses this ontology to find analogs within new stories in time
logarithmic in the total number of stories, yielding significant time-savings over
linear analog retrieval with only a small sacrifice in accuracy. We also provide
a proof of concept for how our framework allows for cortically-inspired algo-
rithms to perform analogical inference. Finally, we discuss how insights from
our system can be used so that a cortically-inspired model can serve as the core
mechanism for a full cognitive architecture.

Cortex as Substrate for Cognition & Learning

The neocortex is responsible for much of human intelligence, including sen-
sory perception and higher-level cognition (Rakic, 2009). From studies of neuro-
science, Mountcastle (1978) proposed the hypothesis that the human neocortex
is essentially the same mechanism repeated many times. That is, Mountcas-
tle hypothesized that higher level cognition is built on the same fundamental
building blocks as low-level perception. Such a proposition is attractive from the
viewpoint of Artificial Intelligence because it implies that AI researchers need
only implement a handful of mechanisms, rather than specialized mechanisms
for the myriad aspects of human intelligence (Cassimatis, 2006). For example,
under this proposition one wouldn’t need to implement separate algorithms for
perception and higher-level cognition.

Preprint submitted to Biologically Inspired Cognitive Architectures July 4, 2013

The differences between human brains and the brains of other mammals
seems to be quantitative rather than qualitative (Roth & Dicke, 2005). The
chief difference between human brains and those of other mammals is that
humans have a vastly expanded neocortex (Rilling, 2006). In terms of gross
neuroanatomy, human brains seem to have no special structures or mechanisms
that are absent in the brains of simpler mammals, such as rabbits, that have
little cognitive capacity beyond perception and action. If an expanded neocor-
tex accounts for the bulk of the cognitive differences between humans and other
mammals, then an open question is how an expanded neocortex might account
for these differences. That is, an account is missing of how a cortical substrate
can be leveraged to account for higher level cognition, such as symbolic reason-
ing and analogical inference (Granger, 2011). This is the larger question that
we will partially address in this paper.

In addressing this larger question, we will also address some common criti-
cisms of vector-based approaches to AI (such as connectionism): that they can-
not represent (much less learn) relational schemas such as “sibling”, and that
such systems cannot perform simple parameterized logical inferences such as “If
A loves B and B loves C, then A is jealous of C.” (Marcus, 1998). We have taken
steps to address these criticisms by showing how a second (non-connectionist)
system can transform relational data into feature bags (or equivalently sparse
fixed-width vectors) such that surface overlap among these feature bags corre-
sponds to structural similarity in the relational data. Unlike related approaches
(Socher et al., 2012; Rachkovskij et al., 2013; Levy & Gayler, 2008), our rep-
resentation can exploit partial analogical schemas. That is, a partial overlap
in our representation’s feature bags corresponds to a common subgraph in the
corresponding structures. With this transform, we recast some processes of
higher-level cognition as processes that can be performed by a model inspired
by the sensory cortex.

In this paper, we provide background on a simple model loosely based on
the sensory cortex, and we show how this model can be leveraged to process
relational structures. We claim that this model can be leveraged to perform
some functions, such as analogical inference, usually considered to be in the
realm of higher cognition. Our approach has the added benefit of yielding an
algorithm, called Spontol, that addresses the problem of spontaneous analogy, a
hitherto open problem in computational analogy that asks how analogs can be
efficiently parsed, stored, and quickly retrieved from long-term memory (Pickett
& Aha, 2013). That is, given a corpus of many large unsegmented relational
structures, Spontol discovers analogical schemas that are useful for concisely
encoding the corpus and efficiently retrieves analogs given a new structure. For
example, given a set of narratives in predicate form, Spontol discovers plot
devices and analogs among them.

In the remainder of this paper, we give background on Ontol (Pickett, 2011),
a model of learning and basic inference inspired by the sensory cortex, describe
a novel transform T that converts relational structures into a form on which
Ontol can operate, demonstrate the Spontol system, which uses this transform
to leverage Ontol to address the problems of analogical retrieval and inference,

2

discuss implications and shortcomings of our system, and conclude.

Ontol: A Model Inspired by the Sensory Cortex

In this section, we provide background on a model inspired by the human
sensory cortices (auditory, visual, tactile) called Ontol (Pickett, 2011), that we
will use in later sections. Ontol is a pair of algorithms, both of which are given
“sensor” inputs (feature bags or fixed-length, real-valued non-negative vectors).
The first algorithm, called chunk, constructs an ontology that concisely encodes
the inputs. For example, given a set of feature bags representing 50 by 50
windows from natural images, Ontol produces a feature hierarchy similar to
that found in the visual cortex. The second algorithm, called parse, takes as
input an ontology (produced by the first algorithm) and a new feature bag,
and parses the feature bag. That is, it produces as output the new feature bag
encoded in the higher-level features of the ontology. In addition to “bottom-
up” parsing, the second algorithm also makes “top-down” predictions about
any unspecified values in the feature bag by recursively flattening the feature
hierarchy.

Ontol is ignorant of the modality of its input. It is given no information
about what sensory organ or device is producing its inputs. Instead of relying
on innate knowledge about a modality, the appropriate features are learned
from an ample supply of sensory data. This property allows another system
(called Spontol) to leverage Ontol to find patterns in abstract “sensory” inputs
that are actually encodings of relational structures. Ontol’s modality ignorance
is biologically inspired. In particular, there is evidence of the plasticity of the
sensory cortices of newborn ferrets (and presumably other mammals): When
visual data is rerouted into the primary auditory cortex of newborn ferrets, the
ferrets’ auditory cortex learns features that are similar to those developed in
the visual cortex in normal ferrets (Sur & Rubenstein, 2005).

Ontology Learning

Ontol’s ontology formation algorithm, called chunk, searches for concepts
(or chunks) that allow for concise characterization of feature bags. Since chunks
themselves are bags of features, chunk is applied recursively to create an ontol-
ogy. This algorithm is similar to the recursive block pursuit algorithm described
by Si & Zhu (2011) in that both search for large frequently occurring sets of
features. The chunk algorithm differs in that it allows for multiple inheritance,
while recursive block pursuit creates only strict tree structures. In the section
on Spontaneous Analogy, we show the importance of this property for finding
multiple analogical schemas within a single relational structure.

The chunk algorithm is shown in Figure 1. It takes as input a set B of
feature bags (together with an integer search parameter samples) and produces
an ontology Ω. For simplicity, we describe the discrete binary version of the
algorithm without efficiency modifications, but this can be modified for feature
bags with continuous non-negative real values for each feature. The chunk algo-
rithm searches for intersections among existing feature bags and proposes these

3

// Returns an ontology Ω to compress B, a set of feature bags
// samples is the # of candidate concepts at each iteration.
define chunk(B, samples):

Ω = copy(B)
while the description length (DL) of Ω is decreasing:

bestScore = 0
foreach candidate ∈ getCandidates(Ω, samples):

score = scoreCandidate(Ω, candidate)
if score > bestScore: best, bestScore = candidate, score

if bestScore > 0:
conceptName = new unique symbol
Ω = replaceBest(Ω, best, conceptName) ∪ {best}

return Ω

// Returns samples randomly chosen intersections of bags in Ω
define getCandidates(Ω, samples):

candidates = {}
for i = 1 · · · samples:

a, b = drawRandomPair(Ω)
candidates = candidates ∪ {a ∩ b}

return candidates

// The decrease in description length if candidate is used as a concept
define scoreCandidate(Ω, candidate):

return
∑

n∈Ω
max (0, conceptScore (n, candidate)) - |candidate|

// Returns the compressed version of Ω using concept best to reduce DL
define replaceBest(Ω, best, conceptName):

Ω′ = copy(Ω)
foreach Ω′

n ∈ Ω′:
if conceptScore(Ω′

n , best) > 0:
Ω′

n = replace(Ω′
n, best) + conceptName

Ω′

conceptName = best

return Ω′

// The decrease in DL if n were expressed using candidate

define conceptScore(n, candidate):
// Take into account errors introduced by candidate

return |n− replace(n, candidate) | - | replace(n, candidate)− n| − 1

// Make n inherit from candidate

define replace(n, candidate):
return n− candidate

Figure 1: Ontol’s Chunking Algorithm for Ontology Learning

as candidates for new concepts. Each candidate is evaluated by how much it
would compress the ontology, then the best candidate is selected and added
to the set of feature bags, and the process is repeated until no candidates are
found that further reduce the description length of the ontology. Figure 2 shows
the ontology constructed by this algorithm when applied to an animal dataset,
where base-level features could take on positive, negative, or unstated values
(e.g., fins and ¬fins were both features). Ontol was originally developed as a
rough model of the sensory cortex (where visual or audio percepts were modeled

4

as bit-vectors). In this figure, the “sensory percepts” are the binary features for
each animal1.

Figure 2: Part of The Zoo Ontology. Instances are individual animals shown on the left,
and base-level features are on the right. Black nodes in the middle correspond to higher-level
features. The concept that corresponds to “fish” is marked. Inhibitory links (for negative
features, such as ¬fins) are shown as dark circles.

Parsing and Prediction

Given an ontology and a new instance, Ontol’s parse(b,Ω) algorithm encodes
the feature bag instance b using the higher-level features in the ontology Ω. For
example, given the ontology shown in Figure 2 and a new animal (a goldfish)
that doesn’t breathe, has fins, has no feathers, and is domestic, Ontol will parse
the animal as an instance of the fish concept2, with the exception that it is do-
mestic. Ontol’s parse algorithm is given in Figure 3. If Ontol is given no other
information about the animal, it will also perform top-down inference, and un-
fold the fish concept to predict that the new instance has eggs, no hair, has a
tail, etc.. This latter step is called “top-down prediction”. Ontol searches for
the parse that minimizes the description length of the instance. In our goldfish

1Source code for Ontol and other algorithms in this paper can be downloaded at http:

//marcpickett.com/src/analogyDemo.tgz.
2Ontol names higher-level concepts with arbitrary tags. We use the term “fish” for sim-

plicity.

5

example, the raw description of the goldfish consists of 4 features {¬breathes,
fins, ¬feathers, domestic}, while the compressed encoding has only 2 fea-
tures {fish, domestic}. Although the optimal parsing problem is NP-complete
(via reduction from 3-SAT), an approximation using a single greedy bottom-up
pass can be performed in time logarithmic in the number of learned concepts
(Pickett, 2011). Importantly, Ontol examines only a small subset of the concepts
and instances while parsing. This means that, when judging concept similarity,
Ontol does not need to compare each of its n nodes. This property is important
for spontaneous analog retrieval (described below).

// Bottom-up greedily parses feature bag b using concepts in Ω.
// parentsj are the concepts in Ω that directly include concept j.
// flati is the flattened (non-parsed) representation of concept i.
define parse(b,Ω):

unexplained = copy(b); b′ = {}; bestScore = 1
// While unexplained is still being explained away.
while bestScore > 0:

bestScore = 0
// Find which concept best explains the remainder.
foreach i ∈

⋃
j∈b′∪unexplained parentsj :

if flati ⊆ b:
score = |unexplained ∩ flati| − 1
if score > bestScore: bestScore, best = score, i

if bestScore > 0:
// Add best to the parse and remove what best explains.
b′ += best

unexplained -= flatbest
// Return the parsed b with what hasn’t been explained.
return b′ ∪ unexplained

Figure 3: Ontol’s Parsing Algorithm

Transforming Structures to “Percepts”

We now describe a method for transforming relational structures into fea-
ture bags such that the problem of analog retrieval is reduced to the problem of
percept parsing. An example of this process is shown for the Sour Grapes fable
in Figure 4. For this process, we rely on a transform T (described below) that
takes a small relational structure and converts it into a feature bag (exemplified
in Figure 4(c)). We limit the size of input relational structures for T because
T ’s runtime is quadratic in the size of the structure. We view this limitation
as acceptable because people generally cannot keep all the details of an entire
lengthy novel (or all the workings of a car engine) in working memory. Gener-
ally, people focus on some aspect of the novel, or some abstracted summary of
the novel (or engine). Therefore, we randomly break each large relational struc-
ture into multiple overlapping windows. A window is a small set of connected
propositional statements, where two statements are connected if they share at
least one argument. By using multiple overlapping windows, we exploit a prin-
ciple akin to one used by the HMax model of the visual cortex (Riesenhuber &

6

Poggio, 1999): as the number of windows for a relational structure increases,
the probability decreases that another structure has the same windows without
being isomorphic to the first.

Related Work on Representing Structure as Features

There has been some work on representing structures as vectors. For exam-
ple, Holographic Reduced Representations have been used to implement Vector
Symbolic Architectures in which there is a correlation between vector overlap
and structural similarity (Gayler & Levy, 2009; Rachkovskij et al., 2013). These
systems are limited in that they are unable to exploit partial analogical schemas.
That is, unlike our representation, a partial overlap in these systems’ vectors
does not correspond to a common subgraph in the corresponding structures.
The ability to represent partial structural overlap as partial vector (or feature
bag) overlap is important for our system to construct the ontology of analogical
schemas that it uses to efficiently retrieve analogs for new structures.

We can also apply chunk to feature bag graphlet kernels (Shervashidze et al.,
2009), which are related to the transform T below in that both represent partial
graphs, but this earlier work applies only for cases where there is one kind of
entity, one kind of relation, and only binary relations, while our transform works
for multiple kinds of entities and relations, including relations of large arity.

Transforming Small Relational Structures

Here, we describe an operation T , which transforms a (small) relational
structure into a feature bag. We consider a relational structure to be a set
of relational statements, where each statement is either a relation (of fixed ar-
ity) with its arguments, or the special relation sameAs, which uses the syntax
sameAs <name> (<relation> <arg1> <arg2> ...). The sameAs relation al-
lows for statements about statements. For example, the statements in Figure
4(b) encode (among other things) that “a fox decides that the grapes are sour”.

Given a small relational structure s (. 10 statements), T transforms s into
a feature bag using a variant of conjunctive coding. That is, T breaks each
statement into a set of roles and fillers. For example, the statement want OFox

OGrapes has two roles and fillers, namely the two arguments of the want rela-
tion3. So T breaks this statement into want1=OFox and want2=OGrapes, where
want2 means the 2nd argument of want (i.e., the “wanted”). T then creates one
large set of all the roles and their fillers. If there are multiple instances of a rela-
tion, T gives them an arbitrary lettering (e.g., wantB1=OFox). T makes a special
case for the sameAs relation. In this case, T uses a dot operator to replace the
intermediate variable. For example, the statements sameAs s5 (decide OFox

s3) and sameAs s3 (sour OGrapes) would give us decide2.sour1=OGrapes.
The dot operator allows T to encode nested statements (i.e., statements about
statements). Given a set of roles and fillers, T then chains the fillers to get

3The O in OFox serves to distinguish this object from the unary relation fox (where fox x

means x is a fox).

7

“A fox wanted some grapes, but could not get them. This caused him to decide that the
grapes were sour, though the grapes weren’t. Likewise, men often blame their failures on
their circumstances, when the real reason is that they are incapable.”

(a) English (for clarity)

fox OFox cause s1 s2 sameAs s3 (sour OGrapes)

false s3 grapes OGrapes sameAs s5 (decide OFox s3)

cause s4 s5 incapable OMen sameAs s4 (get OFox OGrapes)

false s4 decide OFox s3 sameAs s1 (incapable OMen)

men OMen sameAs s2 (fail OMen) blameFor OMen concCircum s2

fail OMen want OFox OGrapes circumstances concCircum

(b) Predicate Form (the transform’s actual input)

blameFor OMen concCircum s2

sameAs s2 (fail OMen)

fail OMen

circumstances concCircum

men OMen

incapable OMen

T⇒

blameFor1=blameFor3.fail1

circumstances1=blameFor2

fail1=blameFor3.fail1

fail1=blameFor1

incapable1=blameFor3.fail1

incapable1=blameFor1

incapable1=fail1

men1=blameFor3.fail1

men1=blameFor1

men1=fail1

men1=incapable1

(c) Transforming a Window

blameFor1=blameFor3.fail1

circumstances1=blameFor2

fail1=blameFor3.fail1

fail1=blameFor1

incapable1=blameFor3.fail1

incapable1=blameFor1

incapable1=fail1

men1=blameFor3.fail1

men1=blameFor1

men1=fail1

men1=incapable1

false1.sour1=decide2.sour1

decide1=cause2.decide1

decide2=cause2.decide2

false1=cause2.decide2

false1=decide2

.

.

.

.

.

cause2.fail1=blameFor3.fail1

blameFor1=blameFor3.fail1

blameFor1=cause2.fail1

cause2=blameFor3

fail1=blameFor3.fail1

fail1=cause2.fail1

fail1=blameFor1

men1=blameFor3.fail1

men1=cause2.fail1

men1=blameFor1

men1=fail1

blameFor1=blameFor3.fail1

fail1=blameFor3.fail1

fail1=blameFor1

incapable1=blameFor3.fail1

incapable1=blameFor1

incapable1=fail1

men1=blameFor3.fail1

men1=blameFor1

men1=fail1

men1=incapable1

.

.

.

(d) Many Transformed Windows

Figure 4: Transforming the Sour Grapes Story. We show the transformation of Sour
Grapes from predicate form to feature bag form. For clarity, we show an English paraphrase
of the story (a), though the input to our transform has already been encoded in the predicate
form shown in (b), which shows the story as a set of 18 statements. In (c), we show a window
w from the story and its feature bag transform T (w). Finally, the story is represented as
many transformed windows (d).

filler equalities. For example, if we have that want1=OFox and decide1=OFox,
then chaining gives us want1=decide1. Chaining is essential for recognizing
structural similarity (as opposed to just surface similarity) between relational
structures, and allows us to side-step a criticism of conjunctive coding and ten-
sor products: that the code for wantB1=OFox may have no overlap with the
code for want1=OFox (Hummel et al., 2004). Chaining introduces the code for
wantB1=want1, which makes the similarity apparent when searching for analogs.

8

After chaining the roles and fillers, T treats each of these role-filler bindings as
an atomic feature. Note that, when we treat roles and fillers as atomic features,
Ontol doesn’t recognize overlap among feature bags unless they share exactly
the same feature. For example, the atomic feature wantB1=OFox has no more
resemblance to want1=OFox for Ontol than it does for any other feature. Also
note that the ordering of the roles in each feature is arbitrary but consistent
(we use reverse alphabetical order), so there is a men1=incapable1 feature, but
not an incapable1=men1 feature. The left side of Figure 4(c) shows a window
(i.e., a small connected subset) taken from the sour grapes story from Figure
4(b). On the right side is the feature bag transform of this set of 6 statements,
consisting of 11 atoms.

Spontaneous Analogy

In our day-to-day experience, we often generate analogies spontaneously
(Wharton et al., 1996; Clement, 1987). That is, with no explicit prodding,
we conjure up analogs to aspects of our current situation. For example, while
reading a story, we may recognize a plot device that is analogous to one used in
another story that we read long ago. The shared plot device may be a small part
of each story, it is usually not explicitly delineated for us or presented in isolation
from the rest of the story, and we may recognize the analogy of the plot device
even if the general plots of the two stories are not analogous. Somehow, we
segment out the plot device and retrieve the analog4 from another story in long-
dormant memory. Spontaneous analogy is the process of efficiently retrieving
an analog from long-term memory given an unsegmented probe structure such
that part of the probe shares structural similarity with the analog, though they
might not share surface similarity. This process differs from standard models of
analogy, which are given a delineated probe, and often specify a delineated source
analog from which to map. For example, our system is given a large story in
its entirety, rather than just a delineated plot device. Given a pair of analogs,
analogical mapping is relatively straightforward. The more difficult problem
is finding the analogs to begin with. As Chalmers et al. (1992) argue “when
the program’s discovery of the correspondences between the two situations is
a direct result of its being explicitly given the appropriate structures to work
with, its victory in finding the analogy becomes somewhat hollow”.

The process of spontaneous analogy shares some properties with low-level
perception, as exemplified in Figure 5. Within seconds of being presented with
a visual image of a pterodactyl flying over a canyon, one can typically describe
the image using the word “pterodactyl”, even if one has had no special explicit

4In our terminology, an analog is a substructure of a domain that is structurally similar to
a substructure of another domain, and an analogical schema is a generalization of an analog.
For example, an input domain might be the entire story of Romeo and Juliet, an analog would
be the part of the story where Romeo kills Tybalt, who killed Romeo’s friend, Mercutio (like
in Hamlet where Hamlet kills Claudius, who killed Hamlet’s father), and an analogical schema
would be the generalized plot device of a “revenge killing”.

9

Source

Target

(a) Mapping

Pterodactyls! Canyon

(b) Spontaneous Retrieval

Figure 5: An analog of Analogical Mapping vs. Spontaneous Analogy. In Analog-
ical Mapping (a), we are given an explicit source and target, free from interfering context.
In spontaneous analogy (b), the analogs (represented by the “Pterodactyl” and “Canyon”
concepts) are spontaneously retrieved from long-term memory given an unsegmented probe
(represented by the top image).

recent priming for this concept, indeed even if one has not consciously thought
about pterodactyls for several years. For us to produce the word “pterodactyl”,
we must segment the pterodactyl from the canyon and retrieve the “ptero-
dactyl” concept from the thousands of concepts stored in memory. We must
have learned the “pterodactyl” concept to begin with from unsegmented im-
ages. Furthermore, we assume that the brain’s mechanism for retrieving the
pterodactyl concept is more efficient than exhaustively visiting every concept
in long-term memory. It seems unlikely that the representation for “the back
door of my kindergarten classroom” is activated while viewing the pterodactyl
image, though one might be able to quickly identify an image of this door (or
some other specific rarely-visited concept). This perceptual process is robust to
noise: The pterodactyl in the image could be partially occluded, ill-lit, oddly
colored, or even drawn as a cartoon, and we are still able to correctly identify
this shape (to a certain point). Likewise, many details of the plot devices from
the above story example could be altered or obfuscated, but this analogy would
degrade gracefully.

Related Work on Spontaneous Analogy

There has been earlier work on the problem of analogy in the absence of
explicitly segmented domains. The COWARD system of Baldwin & Goldstone
(2007) addresses this problem by searching for mappings within a large graph,
essentially searching for isomorphic subgraphs. SUBDUE (Holder et al., 1994)
compresses large graphs by breaking them into repeated subgraphs, but is lim-
ited in that the output must be a strict hierarchy, and would be unable to
discover the lattice structure of the concepts in Figure 2. Nauty (McKay, 1981)
uses a number of heuristics to efficiently determine whether one graph is a sub-
graph of another, but it must be given source and target graphs to begin with.

10

The MAC phase of MAC/FAC (Forbus et al., 1995) bears some relation to
our spontaneous analog retrieval. MAC uses vectors of content, such as the num-
ber of nodes and edges in a graph, as a heuristic for analog retrieval. However,
in cases where the subgraph in question is a part of a much larger graph, the
heuristics that MAC uses are drowned out by the larger graph. Furthermore,
our system uses “chained” features, which is a core difference between MAC’s
content vectors and our feature bags. ARCS (Thagard et al., 1990) also assumes
that analogs have been delineated (i.e., it matches an entire probe, rather than
a substructure). SEQL (Kuehne et al., 2000) generalizes relational concepts,
but doesn’t build a hierarchical ontology of analogical schemas. Yaner & Goel
(2006) describe a two-stage analog retrieval system similar to MAC/FAC, but
it differs from our work in that the first (filtering) stage still considers every
possible analog (requiring O (n) time in the number of analogs in memory). Be-
low, we show how Spontol builds an ontology that it then uses as an “indexing
structure” to retrieve analogs in logarithmic time.

The Conceptual Analogy system of Börner (2001) uses hierarchical clustering
on a set of relational structures to learn a hierarchy that it then uses to efficiently
find analogs for new structures, which is similar in spirit to our system’s use
of an ontology for indexing analogs. However, the similarity metric used by
Börner’s system is based on the number of edges shared between graphs (with
identically labeled end-nodes), and thus fails to find isomorphic subgraphs in
cases where nodes’ names are different between structures.

Spontol: An Algorithm for Spontaneous Analogy

Here, we describe Spontol5, an algorithm that uses the transform T to lever-
age Ontol to build an ontology from a set of relational structures, and uses this
ontology to efficiently segment and retrieve analogs for new relational structures.
Spontol transforms relational structures into feature bags so that their surface
similarity corresponds to the structural similarity of the relational structures.
After Spontol has made this transformation, the problem of spontaneous anal-
ogy is reduced to the problem of feature overlap, and any of several existing
vector-based systems (such as connectionist models) can be used to find and
exploit patterns in feature vectors.

The process for building an ontology of analogical schemas from large rela-
tional structures, called Spontol-Build, is described in Figure 6. This algorithm
extracts numWindows windows from each large relational structure, transforms
them into feature bags (exemplified in Figure 4(d)), then chunks these feature
bags to create an ontology of windows called windowOntology. Spontol-Build

then re-encodes the windows by parsing them using this ontology, and re-encodes
the larger structures (from which the windows came) as a feature bag of the
parsed windows. Finally, Spontol-Build runs another pass of chunking on the
re-encoded structures to generate the schema ontology.

5Spontol is short for “spontaneous analogy using theOntol ontology learning and inference
algorithm”.

11

// Creates an ontology of schemas given a set of structures S.
// numWindows is the # of windows to grab per structure.
// windowSize is the # of statements per window.
define Spontol-Build(S, numWindows,windowSize)

// Randomly grab windows from each structure,
// and transform them into feature bag form.
allWindows = {}
foreach s ∈ S ; for i = 1, · · · , numWindows

let ws,i = grabConnectedStatements(s,windowSize)
add T (ws,i) to allWindows

// Run chunk to generate the window ontology
windowOntology = chunk(allWindows)
// Re-encode each structure using the reduced-size windows.
foreach s ∈ S

bigWindowss = {}
for i = 1, · · · , numWindows

add parse(T (ws,i) , windowOntology) to bigWindowss
// Run chunk to generate the schema ontology.
schemaOntology = chunk(bigWindows)
return schemaOntology, windowOntology

Figure 6: Spontol’s Ontology Learning Algorithm

The process of spontaneous analog retrieval, called Spontol-Retrieve, is given
in Figure 7. When given a new relational structure s, we encode s by extracting
windows from it, parsing these using the windowOntology, then parsing the
feature bag representation using the schemaOntology. This yields a set of
schemas that are contained in s.

// Finds analogical schemas for relational structure s.
// 〈args〉 =
// s: the input relational structure
// schemaOntology: the schema ontology
// windowOntology: the window ontology
// numWindows: the # of windows to grab per structure
// windowSize: the # of statements per window
define Spontol-Retrieve(〈args〉)

// Randomly grab windows from s,
// transform them into feature bag form,
// and parse them using the window ontology.
bags = empty feature bag
for i = 1, · · · , numWindows

wi = grabConnectedStatements(s,windowSize)
add parse(T (wi) , windowOntology) to bags

// Parse bags, the bag representation of s
relevantSchemas = parse(bags, schemaOntology)
return relevantSchemas

Figure 7: Spontol’s Spontaneous Analogy Algorithm

12

Spontaneous Analogy using Spontol

We hypothesize that Spontol is more efficient at retrieving analogs than
related approaches, such as MAC/FAC. To partially test this hypothesis, we
applied Spontol to a database of 126 stories provided by Thagard et al. (1990).
These include 100 fables and 26 plays all encoded in a predicate format, where
each story is a set of unsorted statements. An example story in predicate form
is shown in Figure 4(b). Note that although the predicates and arguments have
English names, our algorithm treated all these as gensyms except for the special
sameAs relation. In this encoding, the smallest story had 5 statements, while
the largest had 124 statements, with an average of 39.5 statements.

Figure 8: Part of the ontology Spontol learned from the story dataset. As in the
Zoo Ontology in Figure 2, black ovals represent higher level concepts. The “raw” features
(corresponding to the white ovals in Figure 2) are omitted due to space limitations. Instead,
we show the outgoing edges from each black oval. While in the Zoo Ontology, the higher level
concepts correspond to shared surface features, in this figure, high level concepts correspond
to shared structural features, or analogical schemas. For example, the denoted oval on the
right represents a Double Suicide schema, which happens in both Romeo and Juliet and in
Julius Caesar.

We ran Spontol-Build on these stories which produced an ontology of stories,

13

part of which is shown in Figure 8 (in this case, we somewhat arbitrarily chose
numWindows = 100 and windowSize = 20). This figure shows an analogical
schema found in both Romeo and Juliet and in Julius Caesar that we’ve labeled
as the “Double Suicide” schema. In the first story, Romeo thinks that Juliet is
dead, which causes him to kill himself. Juliet, who is actually alive, finds that
Romeo has died, which causes her to kill herself. Likewise, in Julius Caesar,
Cassius kills himself after hearing of Titinius’s death. Titinius, who is actually
alive, sees Cassius’s corpse, and kills himself. The largest schema found (in
terms of number of outgoing edges) was that shared by Romeo and Juliet and
West Side Story, which are both stories about lovers from rival groups. The
latter doesn’t inherit from the Double Suicide schema because Maria (the analog
of Juliet), doesn’t die in the story, and Tony (Romeo’s analog) meets his death
by murder, not suicide. Some of the schemas found were quite general. For
example, the oval on the lower right with 6 incoming edges and 3 outgoing
edges corresponds to the schema of “a single event has two significant effects”.
And the oval above the Double Suicide oval corresponds to the schema of “killing
to avenge another killing”.

Spontol-Retrieve uses this schema ontology to efficiently retrieve schemas for
a new story, which can be used to make inferences about the new story in a
manner analogous to the “goldfish” example from the subsection on Parsing and
Prediction. To evaluate the efficiency of Spontol-Retrieve, we randomly split our
story dataset into 100 training stories and 26 testing stories (we evaluated 100
such partitionings). We then used an ontology learned from the training set, and
measured the number of comparisons needed to retrieve schemas (during parse)
for the testing set. We compare this approach to MAC/FAC, which, during
the MAC phase, visits each of the 100 training stories. Whereas MAC/FAC
returns entire stories, Spontol-Retrieve returns analogical schemas (just as a
visual system might return a generic “pterodactyl” concept rather than specific
instances of pterodactyls). For comparison, we modify Spontol-Retrieve to return
the set of instances that inherit from relevantSchemas, rather than just the
schemas.

Accuracy Avg. # Comparisons

MAC/FAC 100.00% ± .00% 100.00 ± .00
Spontol 95.45% ± .62% 15.43 ± .20

Table 1: Speed/Accuracy Comparison of Spontol

Results are shown in Table 1, averaged over 100 trials. We show accuracy
(and standard error) for both systems measured as the percentage of stories cor-
rectly retrieved, where a story was determined to be correct if it was retrieved
by MAC/FAC. Whereas MAC/FAC’s case-by-case comparison requires a linear
number of operations (in the number of structures), Spontol requires only loga-
rithmic number of comparisons at a slight cost of accuracy. Therefore, Spontol
requires an order of magnitude fewer comparisons than MAC/FAC, or any lin-
ear look-up algorithm (for a survey, see Rachkovskij et al. (2013)). For larger

14

datasets, we hypothesize that these differences will be even more pronounced.
Although each comparison by both MAC and Spontol-Retrieve is a fast vector
operation, for very large datasets (e.g., 109 relational structures), even a linear
number of vector operations becomes impractical.

Our comparison doesn’t take into account the computational overhead used
by Spontol in building the schema ontology (whereas MAC/FAC doesn’t require
this overhead). While this overhead is currently significant, we are developing an
incremental version of chunk that builds an ontology in O (n logn) in the number
of feature-bags. Furthermore, the overhead to build the schema ontology per
probe will be minimal when the number of probes is much larger than the number
of stories used to build the ontology.

To test the importance of chaining that Spontol’s T transformation uses,
we performed the same experiment as above with the exception that the chain-
ing step was skipped. As expected, this caused Spontol to retrieve only those
analogs that had some surface similarity to the stories in the testing set. Though
the average retrieval time for this version (10.88 ± .24 comparisons) was slightly
faster than the full version of Spontol, the accuracy was significantly worse, an
average of only 49.64% ± .80% of the relevant analogs were retrieved.

In future work, we will test these systems on a broader range of relational
datasets to help elucidate the conditions under which Spontol yields high accu-
racy and very-low retrieval cost.

Analogical Inference

Parsing and top-down prediction may be used together with a chaining algo-
rithm to perform rudimentary logical inference. Briefly, the chaining algorithm
chains bindings where a binding is a symmetrical relation stating that two vari-
ables have the same value. If A is bound to B, and B is bound to C, then
chaining infers that A is bound to C. A simplified example of inference using
parsing, top-down prediction, and chaining is shown in Figure 9. In this ex-
ample, Spontol has learned analogical schemas from stories of theft, diplomatic
visits, and defaulted loans. In The Story of Doug, Spontol is told that Doug
loaned a spatula to Gary who then defaulted. Spontol parses this story, uses
top-down prediction, and chaining to infer that the spatula was lost. This ex-
ample is simplified in that it does not use windowing, but it shows the basic
mechanism of inference.

Discussion

In this paper, we have introduced, demonstrated, and given an initial em-
pirical exploratory analysis for a system that solves the problem of spontaneous
analogy. By representing relational structures as feature bags, as described in
the section on Spontaneous Analogy, we reduce the problems of analogy to prob-
lems of surface similarity. Some of these problems and their reduced versions
are shown in Figure 10.

15

Figure 9: Basic inference using bottom-up parsing, top-down prediction, and chain-
ing In this simplified example, we use an ontology of schemas (learned from stories shown
on the lower left) to parse The Story of Doug, which is parsed to inherit from the concept at
the top-right. This concept has the atomic feature “loaned-lost”, which, through top-down
implication, we infer to be part of The Story of Doug. We then use our chaining algorithm
system to interpret the features in the Story of Doug as bindings, and chain “loaned-lost”
with “loaned-Spatula” to infer “lost-Spatula” (i.e., the Spatula was lost).

Problem in Problem in
Relation Space Feature Bag Space

Structural Similarity → Surface Similarity
Analogical Schema Induction → Concept Discovery
Spontaneous Analogical Reminding → Concept Recognition
Analogical Inference → Top-down Prediction
Structural Segmentation → Concept Parsing

Figure 10: Reducing problems from relational space to feature bag space.

Our representation also offers a new solution for the binding problem for
long-term (static) memory that allows for efficient analog retrieval in the ab-
sence of explicitly segmented domains. The binding problem asks how we can
meaningfully represent bindings between roles and fillers. Most solutions to the
binding problem in connectionism (e.g., LISA (Hummel & Holyoak, 2005)) do
so in terms of temporal synchronicity, which requires continual activation and
is therefore impractical for static memory. Temporal synchronicity only works
for knowledge in working memory, and these models typically address storage
in long-term memory by relying on some form of conjunctive coding or tensor
products. Though these systems fail to address how relational structures can

16

be efficiently retrieved from long-term memory, we hypothesize that a working-
memory system, such as LISA, may be necessary for the “chaining” process
on which our system relies (though there has also been work on using Vector
Symbolic Architectures to chain variables (Kanerva, 2010)).

On a more conceptual level, Spontol makes headway into the deeper prob-
lem of the unification of perceptual and cognitive processes. A criticism of
“symbolic” approaches to artificial intelligence is the separation of perception
and cognition (Chalmers et al., 1992). For example, many cognitive architec-
tures (e.g., SOAR, ACT-R, and ICARUS (Langley et al., 2009)) assume that
a perceptual system provides symbols with which to do “cognitive” processes
such as planning or analogical reasoning. On the other hand, until now, there
have been few accounts of how a perceptual or vector-based system (such as a
connectionist network) can efficiently retrieve analogs from long-term memory.
Our approach demonstrates how a vector-based system can be used to perform
processes formerly only performed by symbolic reasoners.

Future Extensions

Although Spontol addresses some outstanding problems in Computational
Analogy, there is still ample room for future work. The most exciting exten-
sion to our work is the implementation of other cognitive processes, such as a
hypothetical reasoning system, that leverages a cortically-inspired model as its
core mechanism for representation, learning, and basic inference. This may po-
tentially provide the flexibility and robustness of a connectionist system while
maintaining the combinatorial power of symbolic approaches to Artificial Intel-
ligence.

Although we specify a particular perceptual model, since a feature bag can
be represented by a sparse fixed-length vector, our system can easily be ex-
tended to instead use any modality-ignorant model that is able to create and
use an ontology from sparse fixed-length vectors (Si & Zhu, 2011; Le et al.,
2012; Riesenhuber & Poggio, 1999; George & Hawkins, 2009). In future work,
we plan to investigate using other vector-based systems to process the feature
bags produced by the transform T . In particular, we are currently extending
Ontol’s chunk and parse algorithms into a single algorithm that is fed input
vectors incrementally and assimilates (or parses) them and accommodates (or
modifies the ontology) for what it can’t assimilate, in a style similar to the
theory described by Piaget (1954).

While chunk only finds conjunctions, some of the perceptual models listed
above do “pooling” (finding useful disjunctions) as well as finding conjunctions
(though not in a domain-ignorant way). Pooling has been shown as a means for
efficiently representing invariant concepts in perception (e.g., visual objects with
invariance to translation, rotation, and scale (Riesenhuber & Poggio, 1999)). If
a modality-ignorant perceptual system is developed that finds useful disjunc-
tions, it would be interesting to apply this system to transformed relational
structures. We hypothesize that this new version of Spontol would be able to
discover relational equivalence classes. For example, our system currently sees
no similarity between the symbols likes and loves, though these symbols are

17

interchangeable in some cases. We hypothesize that pooling would allow Spontol
to exploit this equivalence.

Our implementation for representing a relational structure as a set of win-
dows might not scale well to very large structures without some modifications.
An open problem is how windows might be managed in a sensible way. Spon-
tol currently uses “bags of windows” for medium-sized structures. We propose
extending Spontol by allowing hierarchies of progressively higher-order bags to
represent larger structures (e.g., bags of bags of bags of windows).

A common criticism of conjunctive coding and tensor products is that they
cause an explosion of features (Hummel et al., 2004). For example, in our
story demonstration, the feature-bag representation used 48,848 atomic features
(such as men1=incapable1) to represent the bindings from 126 stories, which
originally used a total of 3,572 atomic symbols to express their relational forms.
To address this, we “aliased” the features that represent bindings by creating
an arbitrary many-to-one hash to reduce the number of features from 48,848
to 5,000 (e.g., men1=incapable1, king1=banish2, dislike2=causeB2.reject2
and 7 other features all get mapped to hash1977). This resulted in some loss
of performance: when running the same experiment as before with this change,
the average retrieval time increased from 15.43 to 21.73±0.31 comparisons, and
the average accuracy decreased from 95.45% to 86.06% ± 0.36%. We suspect
that aliasing causes stories to appear more similar to each other, which causes
the number of comparisons to increase. In future work, we plan to further
investigate the effect of feature count on speed and accuracy.

In a more cognitively plausible representation, each of the 3,572 atomic sym-
bols would be encoded by a bag of features. That is, our implementation of
Spontol currently treats roles and fillers as atoms. Because of this, Spontol fails
to find structural similarity when roles are similar, but not identical. For exam-
ple, Spontol would see no overlap between a “revenge killing” and a “revenge
beating” because it sees no similarity between a “killer” and a “beater”. A
future extension to Spontol is to allow both roles and fillers themselves to be
feature bags, which would allow surface similarity between “killer” and “beater”.
Bindings would then be tensor products of these feature bags.

An important open problem is how relational structures arise from sensor
data that isn’t explicitly relational. That is, how do people extract entities
and relations from raw percepts, which are essentially feature bags representing
sensor readings? The stories in our demonstration were already summarized
and encoded in predicate logic by a person. A person can watch a video of a
production of Romeo and Juliet —a stream of pixels and audio— and produce
this summary. How people do this (or how other intelligent systems might do
this) is the subject of our longer-term future work.

Conclusion

The chief contribution of this paper is a system, Spontol, that uses the same
algorithm to process sensory and higher-level (relational) data. We demon-
strated Spontol by using it to solve the problem of spontaneous analogy. That

18

is, we have demonstrated how Spontol can efficiently store and retrieve analogs
without the need for human delineation of schemas.

Spontol may offer evidence in support of the computational feasibility of a
uniform “substrate” of intelligence (Mountcastle, 1978). In particular, we’ve
shown how a system that was designed to process perceptual data (Ontol) can
be leveraged to process “symbolic” data (i.e., relational structures). This may
provide insight into how a model of the sensory cortex may be used as the core
mechanism for a full cognitive architecture.

Acknowledgements

We would like to thank all the reviewers for their helpful suggestions. This
research was sponsored by NRL. Marc Pickett performed this work while sup-
ported by an NRC postdoctoral fellowship at the Naval Research Laboratory.
The views and opinions contained in this paper are those of the authors, and
should not be interpreted as representing the official views or policies, either
expressed or implied, of NRL or the DoD.

References

Baldwin, D., & Goldstone, R. L. (2007). Finding analogies within systems: Con-
straints on unsegmented matching. In Workshop on Analogies: Integrating
Multiple Cognitive Abilities .

Börner, K. (2001). Efficient case-based structure generation for design support.
Artificial Intelligence Review , 16 , 87–118.

Cassimatis, N. L. (2006). A cognitive substrate for achieving human-level intel-
ligence. AI Magazine, 27 , 45–56.

Chalmers, D. J., French, R. M., & Hofstadter, D. R. (1992). High-level percep-
tion, representation, and analogy: A critique of artificial intelligence method-
ology. Journal of Experimental & Theoretical Artificial Intelligence, 4 , 185–
211.

Clement, J. (1987). Generation of spontaneous analogies by students solving
science problems. In Thinking Across Cultures (pp. 303–308).

Forbus, K., Gentner, D., & Law, K. (1995). MAC/FAC: A model of similarity-
based retrieval. Cog. Sci., 19 .

Gayler, R., & Levy, S. (2009). A distributed basis for analogical mapping.
In New Frontiers in Analogy Research; Proceedings of the 2nd International
Analogy Conference.

George, D., & Hawkins, J. (2009). Towards a mathematical theory of cortical
micro-circuits. Computional Biology, 5 .

19

Granger, R. (2011). How brains are built: Principles of computa-
tional neuroscience. Cerebrum; The Dana Foundation, Available at
http://dana.org/news/cerebrum/detail.aspx?id=30356 .

Holder, L., Cook, D., & Djoko, S. (1994). Substructure discovery in the subdue
system. In Workshop on Knowledge Discovery in Databases .

Hummel, J. E., & Holyoak, K. J. (2005). Relational reasoning in a neurally
plausible cognitive architecture: An overview of the lisa project. Current
Directions in Psychological Science, 14 , 153–157.

Hummel, J. E., Holyoak, K. J., Green, C., Doumas, L. A. A., Devnich, D.,
Kittur, A., & Kalar, D. J. (2004). A solution to the binding problem for
compositional connectionism. In AAAI Fall Symposium on Computational
Connectionism in Cognitive Science.

Kanerva, P. (2010). What we mean when we say “what’s the dollar of mexico?”:
Prototypes and mapping in concept space. In 2010 AAAI Fall Symposium
Series .

Kuehne, S., Forbus, K., Gentner, D., & Quinn, B. (2000). SEQL: Category
learning as progressive abstraction using structure mapping. In Proceedings
of the 22nd Annual Meeting of the Cognitive Science Society.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research
issues and challenges. Cognitive Systems Research, 10 , 141–160.

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J.,
& Ng, A. (2012). Building high-level features using large scale unsupervised
learning. In International Conference in Machine Learning.

Levy, S. D., & Gayler, R. (2008). Vector symbolic architectures: A new build-
ing material for artificial general intelligence. In Proceedings of The First
Conference on Artificial General Intelligence.

Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive Psy-
chology, 37 , 243–282.

McKay, B. (1981). Practical graph isomorphism. Congressus Numerantium,
30 , 45–87.

Mountcastle, V. (1978). An organizing principle for cerebral function: The unit
model and the distributed system. The Mindful Brain, (pp. 7–50).

Piaget, J. (1954). The Construction of Reality in the Child . Basic Books.

Pickett, M. (2011). Towards Relational Concept Formation From Undifferen-
tiated Sensor Data. Doctoral dissertation University of Maryland Baltimore
County.

20

Pickett, M., & Aha, D. (2013). Spontaneous analogy by piggybacking on a per-
ceptual system. In Proceedings of the 35th Annual Conference of the Cognitive
Science Society.

Rachkovskij, D., Kussul, E., & Baidyk, T. (2013). Building a world model
with structure-sensitive sparse binary distributed representations. Biologically
Inspired Cognitive Architectures , 3 , 64–86.

Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental
biology. Nature Reviews Neuroscience, 10 , 724–735.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nature Neuroscience, 2 , 1019–1025.

Rilling, J. K. (2006). Human and nonhuman primate brains: Are they allo-
metrically scaled versions of the same design? Evolutionary Anthropology:
Issues, News, and Reviews , 15 , 65–77.

Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends
in Cognitive Sciences , 9 , 250–257.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., & Borgwardt, K.
(2009). Efficient graphlet kernels for large graph comparison. In International
Conference on AI & Statistics .

Si, Z., & Zhu, S. (2011). Unsupervised learning of stochastic and-or templates
for object modeling. In IEEE International Conference on Computer Vision
Workshops (pp. 648–655). IEEE.

Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic com-
positionality through recursive matrix-vector spaces. In Proceedings of the
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning.

Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral
cortex. Science Signaling, 310 , 805.

Thagard, P., Holyoak, K., Nelson, G., & Gochfeld, D. (1990). Analog retrieval
by constraint satisfaction. Artificial Intelligence, 46 , 259–310.

Wharton, C., Holyoak, K., & Lange, T. (1996). Remote analogical reminding.
Memory & Cognition, 24 , 629–643.

Yaner, P. W., & Goel, A. K. (2006). Visual analogy: Viewing analogical retrieval
and mapping as constraint satisfaction problems. Applied Intelligence, 25 ,
91–105.

21

