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Abstract

The Marchitecture is a cognitive architecture for autonomous
development of representations. The goals of The Marchi-
tecture are domain independence, operating in the absence of
knowledge engineering, learning an ontology of parameter-
ized relational concepts, and elegance of design. To this end,
The Marchitecture integrates classification, parsing, reason-
ing, and explanation. The Marchitecture assumes an ample
amount of raw data to develop its representations, and it is
therefore appropriate for long lived agents.

Introduction

Traditional approaches to Artificial Intelligence focus on se-
lecting an application and then constructing representations
for that domain. These approaches are problematic in that
they require much labor intensive knowledge engineering.
Furthermore, these systems tend to be brittle, often failing
when they encounter unanticipated situations. An alternate
approach is to have the computer develop its representa-
tions autonomously. In this alternate approach, the robot is
viewed as a “robot baby” (Cohen et al. 2002). The robot is
provided a minimal amount of knowledge (implicit or other-
wise) about the world and is expected to learn and develop a
conceptual structure from large amounts of raw sensor data
over a long period of time. This approach is attractive be-
cause it requires little knowledge engineering and is robust
because the agent learns to adapt to unanticipated situations.

If such an agent is to acquire human level intelligence, it
will need to be able to represent and learn relational con-
cepts (e.g., “cousin”, “above”, or “enemy”). Development
of a cognitive architecture is necessary for the solution to
the problem of Artificial Intelligence. Many cognitive archi-
tectures have been proposed (Sun 2004), but, to our knowl-
edge, none focus on domain independent autonomous devel-
opment of representations from raw relational data.

Related Work

Several cognitive architectures have been proposed in the
past. Earlier examples include SOAR (Rosenbloom, Laird,
& Newell 1993), and ACT-R (Anderson 1983). For
overviews of these and other architectures see (Sun 2004)
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and (Langley & Laird 2002). Most of the architectures
discussed in these overviews focus on action and planning
given a human-provided domain model. They contain learn-
ing as an afterthought, if at all, and none focus on the devel-
opment of representations. These architectures often assume
that they start with a cache of domain specific, human engi-
neered representations. However, The Marchitecture will be
able to use ideas from these papers for its planning and rea-
soning.

The Marchitecture uses a top-down/bottom-up approach
for reasoning, planning, data segmentation, explanation, and
classification. This approach is an elaboration on ideas de-
veloped in a model of the human neocortex (Hawkins &
Blakeslee 2004). This earlier model, however, is unable to
handle relational data. For concept formation, The Marchi-
tecture uses ideas from our earlier work (Pickett & Oates
2005), which develops a conceptual structure from non-
relational data. The SUBDUE algorithm (Holder, Cook, &
Djoko 1994) develops a conceptual structure from relational
data, but is not a full cognitive architecture because it in-
cludes neither planning, reasoning, or explanation, and has
only rudimentary methods for data segmentation and clas-
sification, which fail to include the top-down/bottom-up ap-
proach of (Hawkins & Blakeslee 2004).

The Marchitecture

An overview of The Marchitecture is shown in Figure 1. It
has a feed of raw, unsegmented “sensor” data, though the
data can be from any discretizable domain. The only con-
straint is that the data must be represented in our relational
representation framework, which is what The Marchitecture
uses to describe both its raw data and its entire conceptual
structure. Since The Marchitecture uses the same framework
for representing both raw data and higher level abstractions,
it can use the same algorithm to develop abstractions of ab-
stractions, thus forming a concept heterarchy (which, in our
case, is a concept hierarchy except that a concept can have
multiple parent nodes). Furthermore, the framework allows
for parameterized concepts and can thus make grammatical
constructs such as a “blue pen” from the concepts of “blue”
and “pen”. A full description of this representation frame-
work is given in the URL under the authors’ address.

The Main Loop then calls the Parsing/Explanation
module, which tries to segment, classify, and explain the
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Figure 1: Overview of The Marchitecture

new data using concepts that it has already formed. Failing
that, the Main Loop uses the Concept Formation module
to find analogies in the data and use them to form new con-
cepts with which to recharacterize the data. This process is
akin to the assimilation/accommodation process described
by developmental psychologists (Piaget 1954).

The Marchitecture forms concepts by finding large and/or
frequent subgraphs. We refer to this process as analogy dis-
covery. Although the subgraph isomorphism problem is in-
tractable in the worst case, the most useful concepts are the
most common and therefore the most likely to be discovered.
The Marchitecture employs a number of tricks to find fre-
quent subgraphs, such as an approximate canonical form. In
practice, finding subgraph isomorphisms is usually feasible
(McKay 1981). These tricks are encapsulated in the Graph
Abduction and Set Abduction modules, which find super-
graphs of a given subgraph. We use Minimum Description
Length as a measure for which subgraphs should be turned
into concepts. That is, we keep the concepts that allow us
to most concisely characterize the data. It has been argued
that this may be one of the core purposes of concepts (Wolff
2003).

The Parsing/Explanation module uses a top-
down/bottom-up algorithm similar to that described by
(Hawkins & Blakeslee 2004). This module uses the Ab-
duction module to find concepts that are supergraphs of
a given set of data. Once a set of concepts are proposed,
the Parsing/Explanation module uses the Hypothetical
Introduction module to search different “parses” or seg-
mentations of the data, choosing the parsing that results in
the shortest description length. Hypothetical Introduction
also methodically posits unbound parameters for concepts
proposed by Abduction. Concepts can be “unpacked” to
perform reasoning. That is, a concept can be expanded and
the resulting statements are entailments of that concept.
The Parsing/Explanation can thus explain data either by
classification or by explaining the data using a series of
concept unpacking (which amounts to forward chaining).

Combinations of graph abduction, concept unpacking,
and hypothetical introduction can be used for prediction,
planning, reasoning, and explanation.

There are some open issues with the current design: Min-
imum Description Length might not be the best metric for
a model. For example, a short model of Euclidean Geome-
try would simply be the 5 postulates and a set of derivation
rules. This model would be complete, but it might be bet-
ter if some useful lemmas were cached. Thus, sometimes a
faster model is preferable to a smaller model.

Conclusion

The Marchitecture tightly integrates several aspects of cog-
nition. The strength of The Marchitecture lies in its simplic-
ity and in its focus on development of representations. So
far, we have implemented the Concept Formation module
of The Marchitecture (described in detail in the URL be-
low the authors’ address), Set Abduction, and Graph Ab-
duction, and tested these on a variety of domains (also de-
scribed in that paper). To guard against domain dependence,
we have a set of disparate domains on which to test The
Marchitecture. Our goal is to apply our algorithm to RISK,
Conway’s Life, robot sonar data, and a traffic simulation do-
main.
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