The Ubercruncher: Concept Formation by Analogy Discovery

Marec Pickett I
Cognition Robotics and Learning
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

Concept formation allows for knowledge transfer, gener-
alization, and compact representation. Concepts are useful
for the creation of a generally intelligent autonomous agent.
If an autonomous agent is experiencing a changing world,
then nearly every experience it has will be unique in that it
will have at least slight differences from other experiences.
Concepts allow an agent to generalize experiences and other
data. In some applications, the concepts that an agent uses
are explicitly provided by a human programmer. A problem
with this approach is that the agent encounters difficulties
when it faces situations that the programmer had not an-
ticipated. For this reason, it would be useful for the agent
to automatically form concepts in an unsupervised setting.
The agent should be able to depend as little as possible on
representations tailored by humans, and therefore it should
develop its own representations from raw uninterpreted data.

I propose to develop an algorithm which will use unsu-
pervised analogy discovery to create a conceptual structure
(also known as an ontology) that’s useful for concisely char-
acterizing data. One purpose of concept formation (and
abstraction in general) is to concisely characterize a set of
data (Wolff 2003). With this view, one can use minimum
description length as a guiding principle for concept forma-
tion. I propose to use this principle to form an ontology of
concepts from a collection of data. The data is a set or a
stream of statements, where each statement is an ordered set
of symbols. These symbols have no meaning for the pro-
gram other than they’re considered to be ground statements.
For example, these symbols can be raw sensor data, or raw
descriptions of chess games.

My hypothesis is that this algorithm will serve as a gen-
eral unsupervised learning system that requires no domain
knowledge or human programmed representations aside
from encoding the data as a set of ordered sets of symbols.
This means that this algorithm should produce useful con-
cepts whether the data is from robot sensors, a description of
a board game, or a simulation of automobile traffic. How-
ever, since the algorithm will be “bootstrapping” its repre-
sentations from data, the data should be cheap and plentiful.
In particular, there should be sufficient data for any useful
patterns to be manifested. Since my method uses the same
representation framework for raw data as it does for higher

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

level concepts, the same algorithm can be applied iteratively
to form increasingly “meta” concepts.

I hypothesize that this learning method will be able to
learn some concepts, specifically concepts dealing with re-
lationships between entities, that no existing method I know
of can learn. The basic idea for my algorithm is that analo-
gies are found within a set of statements, then the analogies
are used to reduce the description length of the statement set
by turning the analogy into a new (usually parameterized)
concept, then re-encoding some of the statements in terms
of this concept. In this paper, I will refer to this algorithm as
The Ubercruncher since it’s an extension of The Cruncher
(Pickett & Oates 2005).

Although cognitive scientists have discussed the central-
ity of analogy in cognition (Hofstadter 2001), and people
have done work on structure mapping (Forbus 2001), (Mar-
shall & Hofstadter 1996) and on subgraph isomorphism
(Holder, Cook, & Djoko 1994), I know of no implemen-
tations that take a large, unsegmented set of statements and
use analogy discovery to produce an ontology.

Related Work

This work builds on work on concept formation in the ma-
chine learning and artificial intelligence community, work
on analogy from the cognitive science community, work
on structure mapping, and work on graph isomorphism. A
full review of this work is beyond the scope of this re-
search summary, but perhaps the work most relevant to The
Ubercruncher is The SUBDUE system (Holder, Cook, &
Djoko 1994) which compresses graphs by finding common
substructures. SUBDUE is similar to The Ubercruncher in
that the data is not assumed to presegmented, and minimum
description length is the guiding principle by which sub-
structures are evaluated. Furthermore, SUBDUE does in-
duction in the sense that frequently occurring substructures
are replaced by a node that symbolizes the full substructure.
However, SUBDUE uses a potentially slow beam search, on
which I plan to improve by building a conceptual structure
that can be used to speed up learning and classification into
a current ontology. Additionally, The Ubercruncher repre-
sents both concepts and meta-concepts in the same frame-
work so that the same algorithm can be used to find analo-
gies in both data and meta-data. Ignoring differences in
representation and search strategy, SUBDUE is essentially



a strictly bottom-up version of The Ubercruncher. As dis-
cussed in the next section, this approach is prone to time
consuming searches and local optima. I plan to improve on
this by adding a top-down component and other means for
escaping local optima.

Previous Work

This work is a consequence of my research over the past
several years on developmental Al I started this work
as an algorithm called “PolicyBlocks” for finding macro-
actions in reinforcement learning (Pickett & Barto 2002),
then I generalized it to handle attribute-value sets (The
Cruncher), and then generalized it to handle relational data
(The Ubercruncher).

PolicyBlocks finds large and frequent subpolicies within
the solutions to several Markov Decision Processes having
the same transition probabilities but different reward struc-
tures. PolicyBlocks uses the principle of minimum descrip-
tion length and the subpolicies that minimize description
length tend to be those that speed learning on future Markov
Decision Processes having the same structure.

The first major extension to PolicyBlocks is The Cruncher
(Pickett & Oates 2005) (not to be confused with The
Ubercruncher). The Cruncher extends PolicyBlocks by
framing it in terms of ontology formation and minimum de-
scription length, and by adding exceptions and the ability to
create multiple levels of concepts.

The Cruncher is a simple representation framework and
algorithm based on minimum description length for auto-
matically forming an ontology of concepts from attribute-
value data sets. Although unsupervised, when The Cruncher
is applied to the a Zoo database, it produces a nearly
zoologically accurate categorization. Like PolicyBlocks,
The Cruncher finds useful macro-actions in Reinforcement
Learning. The Cruncher can also learn models from unin-
terpreted sensor data. In the same paper, we also discuss
advantages The Cruncher has over concept lattices and hier-
archical clustering.

I've implemented an initial version of The Ubercruncher
that I'll refer to as The Unteriibercruncher. This algo-
rithm shares many features of The Ubercruncher includ-
ing the representation framework and an algorithm for find-
ing analogies and using these analogies to form a multi-
tiered ontology. The Ubercruncher will improve on The
Unteriibercruncher chiefly by adding mechanisms for speed-
ing up the search process, which includes allowing for incre-
mental data input, and by providing mechanisms for escap-
ing local optima.

The Unteriibercruncher is given a Knowledge Base for-
mulated as a set of statements. It searches for “isomor-
phisms” in “contiguous” sets of statements, where a pair of
statements are connected if they share a common symbol,
and a set of statements is contiguous if there’s a path within
the statement set from every statement in it to every other
statement in the set. An isomorphism or analogy is consid-
ered useful if it can be used to reduce the number of symbols
needed to describe the original Knowledge Base. This mea-
sure includes the description of the analogy along with the
“calls” to the analogy.

After searching, the best found analogy is used to com-
press the Knowledge Base, resulting in a shorter description.
This entire process (finding analogies and crunching with
them) is repeated until no more useful analogies are found.
In practice, useful analogies are often found as parts of other
analogies, which is what forms a multi-tiered ontology.

Future Work and Conclusion

The work left to do consists of making improvements to
The Unteriibercruncher, specifically those dealing with ef-
ficiency and getting out of local optima, and running The
Ubercruncher on a variety of domains to demonstrate its ver-
satility. Additionally, I’ll need to address how to evaluate the
performance of The Ubercruncher on these domains.

Preliminary results have given me insight as to some
of the shortcomings of the current algorithm (i.e., The
Unteriibercruncher), namely its relative slowness, and its in-
ability to escape local optima. Needed changes range from
lower level “tweaks” (e.g., making changes to the analogy
search heuristics, and otherwise addressing the algorithm’s
“kinks”) to more fundamental algorithmic changes (such as
making the algorithm incremental and using the ontology to
quickly parse (i.e., segment and classify) data).

I propose The Ubercruncher as a general unsupervised
learning algorithm that is domain independent. I propose
to demonstrate the applicability of The Ubercruncher by ap-
plying The Ubercruncher to a wide variety of domains with
expectations that it will use the powerful mechanism of anal-
ogy to successfully create a useful ontology for each.

References

Forbus, K. 2001. Exploring analogy in the large. The
Analogical Mind: Perspectives from Cognitive Science 23—
58.

Hofstadter, D. R. 2001. Analogy as the core of cognition.
The Analogical Mind: Perspectives from Cognitive Science
499-538.

Holder, L.; Cook, D.; and Djoko, S. 1994. Substructure
discovery in the subdue system. In Proceedings of the
Workshop on Knowledge Discovery in Databases.

Marshall, J. B. D., and Hofstadter, D. R. 1996. Be-
yond copycat: Incorporating self-watching into a computer
model of high-level perception and analogy-making. In
Online Proceedings of the 1996 Midwest Artificial Intel-
ligence and Cognitive Science Conference.

Pickett, M., and Barto, A. 2002. Policyblocks: An al-
gorithm for creating useful macro-actions in reinforcement
learning. In Proceedings of the International Conference
on Machine Learning.

Pickett, M., and Oates, T. 2005. The cruncher: Automatic
concept formation using minimum description length. In
proceedings of the 6th International Symposium on Ab-
straction, Reformulation and Approximation (SARA 2005),
Lecture Notes in Artificial Intelligence. Springer Verlag.

Wolff, J. G. 2003. Information compression by multiple

alignment, unification and search as a unifying principle in
computing and cognition. Artif. Intell. Rev. 19(3):193-230.



